Skip to main content
Log in

Effect of heat treatment on microstructure and mechanical properties of cast and directionally solidified high-Nb contained TiAl-based alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two kinds of heavy-alloying β-type TiAl-based alloys Ti44Al6Nb1.0Cr2.0V (A1) and Ti44Al6Nb1.0Cr2.0V0.15Y0.1B (A2) are newly designed. They are prepared by vacuum consumable melting (VCM) and cold crucible directional solidification (CCDS). Via the theoretical analysis and tentative experiment, five alternative heat treatment (HT) schedules are proposed and studied that the corresponding microstructure and room temperature (RT) tensile property are investigated, and finally the optimized HT schedules are acquired. After HT5 (heat preservation in β phase region and at 1290 °C, and then ladder cooling), A2 alloy cast by VCM exhibits a better tensile property with average elongation of 1.20%. For the two CCDS ingots, after HT3 (mainly annealing at 1280 °C), B2 phase and (B2 + γ) blocky morphology are reduced, the columnar grains and small angle lamellas are reserved, and the tensile property also has a moderate improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, H.L. Wang, and G.L. Chen: Lamellar orientation control in a Ti–46Al–5Nb alloy by directional solidification. Scr. Mater. 65, 61–64 (2011).

    Article  CAS  Google Scholar 

  2. E. Schwaighofer, H. Clemens, J. Lindemann, A. Stark, and S. Mayer: Hot-working behavior of an advanced intermetallic multy-phase γ-TiAl based alloy. Mater. Sci. Eng., A 614, 297–310 (2014).

    Article  CAS  Google Scholar 

  3. S.G. Tian, Q. Wang, H.C. Yu, H.F. Sun, and Q.Y. Li: Microstructure and creep behaviors of a high Nb–TiAl intermetallics compound based alloy. Mater. Sci. Eng. A 614, 338–346 (2014).

    Article  CAS  Google Scholar 

  4. A. Weidner, F. Pyczak, and H. Biermann: Scanning and transmission electron microscopy investigattions of defect arrangement in a two-phase γ-TiAl alloy. Mater. Sci. Eng., A 571, 49–56 (2013).

    Article  CAS  Google Scholar 

  5. F. Yang, M. Tane, J.P. Lin, Y.H. Song, and H. Nakajima: Pore formation and compressive deformation in porous TiAl–Nb alloys containing derectional pores. Mater. Des. 49, 755–760 (2013).

    Article  Google Scholar 

  6. M.R. Kabir, M. Bartsch, L. Chernova, K. Kelm, and J. Wischek: Correlations between microstructure and room temperature tensile behavior of a duplex TNB alloy for systematically heat treated samples. Mater. Sci. Eng., A 635, 13–22 (2015).

    Article  CAS  Google Scholar 

  7. H.S. Ding, R.R. Chen, J.J. Guo, W.S. Bi, D.M. Xu, and H.Z. Fu: Directional solidification of titanium alloys by electromagnetic confinement in cold crucible. Mater. Lett. 59, 741–745 (2005).

    Article  CAS  Google Scholar 

  8. H.Z. Niu, Y.Y. Chen, S.L. Xiao, and L.J. Xu: Microstructure evolution and mechanical properties of a novel beta γ-TiAl alloy. Intermetallics 31, 225–231 (2012).

    Article  CAS  Google Scholar 

  9. W.C. Xu, D.B. Shan, H. Zhang, X.A. Li, Y.Z. Zhang, and S. Nutt: Effects of extrusion deformation on microstructure, mechanica properties and hot workability of β containing TiAl alloy. Mater. Sci. Eng., A 571, 199–206 (2013).

    Article  CAS  Google Scholar 

  10. H.Z. Niu, Y.Y. Chen, S.L. Xiao, F.T. Kong, and C.J. Zhang: High temperature deformation behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y alloy. Intermetallics 19, 1767–1774 (2011).

    Article  CAS  Google Scholar 

  11. S.L. Dong, R.R. Chen, J.J. Guo, H.S. Ding, Y.Q. Su, and H.Z. Fu: Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification. Mater. Sci. Eng., A 67, 67–74 (2014).

    Article  Google Scholar 

  12. J.R. Yang, R.R. Chen, H.S. Ding, J.J. Guo, J.C. Han, and H.Z. Fu: Mechanism and evolution of heat transfer in mushy zone during cold crucible directionally solidifying TiAl alloys. Int. J. Heat Mass Transfer 63, 216–223 (2013).

    Article  CAS  Google Scholar 

  13. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, and G.L. Chen: Microstructural control of TiAl–Nb alloys by directional solidification. Acta Mater. 60, 498–506 (2012).

    Article  CAS  Google Scholar 

  14. X.F. Ding, J.P. Lin, L.Q. Zhang, X.P. Song, and G.L. Chen: Microstructures and mechanical properties of directionally solidified Ti-45Al-8Nb-(W, B, Y) alloys. Mater. Des. 32, 395–400 (2011).

    Article  CAS  Google Scholar 

  15. L. Song, L.Q. Zhang, X.J. Xu, J. Sun, and J.P. Lin: Omega phase in as-cast high-Nb-containing TiAl alloy. Scr. Mater. 68, 929–932 (2013).

    Article  CAS  Google Scholar 

  16. C.Q. Peng, B.Y. Huang, and J.C. Tang: Formation of fine fully-lamellar microstructure of TiAl-based alloy in rapid heating cyclic heat treatment process. Trans. Nonferrous Met. Soc. China 11, 649–654 (2001).

    CAS  Google Scholar 

  17. J. Yang, J.N. Wang, Q.F. Xia, and Y. Wang: Effect of cooling rate on the grain refinement of TiAl-based alloys by rapid heat treatment. Mater. Lett. 46, 193–197 (2000).

    Article  CAS  Google Scholar 

  18. Q.F. Xia, J.N. Wang, Y. Wang, and J. Yang: Effect of heating rate on the grain refinement of a TiAl alloy by cyclic heat treatment. Mater. Sci. Eng., A 300, 309–311 (2000).

    Article  Google Scholar 

  19. S.L. Dong, R.R. Chen, J.J. Guo, H.S. Ding, Y.Q. Su, and H.Z. Fu: Effect of power on microstructure and mechanical properties of Ti44Al6Nb1.0Cr2.0V0.15Y0.1B alloy prepared by cold crucible directional solidification. Mater. Des. 67, 390–397 (2015).

    Article  CAS  Google Scholar 

  20. J.R. Yang, R.R. Chen, H.S. Ding, J.J. Guo, J.C. Han, and H.Z. Fu: Heat transger and macrostructure formation of Nb containing TiAl alloy directionally solidified by square cold crucible. Intermetallics 42, 184–191 (2013).

    Article  CAS  Google Scholar 

  21. F.S. Sun, C.X. Cao, S.E. Kim, Y.T. Lee, and M.G. Yan: Alloying mechanism of beta stabilizers in a TiAl alloy. Metall. Mater. Trans. A 32A, 1573–1589 (2001).

    Article  CAS  Google Scholar 

  22. H. Zhong, Y.L. Yang, J.S. Li, J. Wang, T.B. Zhang, S. Li, and J. Zhang: Influence of oxygen on microstructure and phase transformation in high Nb containing TiAl alloys. Mater. Lett. 83, 198–201 (2012).

    Article  CAS  Google Scholar 

  23. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak: Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field. Intermetallics 32, 12–20 (2013).

    Article  CAS  Google Scholar 

  24. X.J. Xu, J.P. Lin, Z.K. Teng, Y.L. Wang, and G.L. Chen: On the microsegregation of Ti-45Al-(8-9)Nb-(W, B, Y) alloy. Mater. Lett. 61, 369–373 (2007).

    Article  CAS  Google Scholar 

  25. R.R. Chen, S.L. Dong, J.J. Guo, H.S. Ding, Y.Q. Su, and H.Z. Fu: Deformation behavior and microstructural evolution of directionally solidified TiAlNb-based alloy during thermo-compression at 1373–1573K. Mater. Des. 84, 118–132 (2015).

    Article  Google Scholar 

  26. D. Gosslar, R. Günther, U. Hecht, C. Hartig, and R. Bormann: Grain refinement of TiAl-based alloys: The role of TiB2 crystallography and growth. Acta Mater. 58, 6744–6751 (2010).

    Article  CAS  Google Scholar 

  27. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht: Grain refinement in beta-solidifying Ti44Al8Nb1B. Intermetallics 23, 49–56 (2012).

    Article  CAS  Google Scholar 

  28. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht: Solidification and grain refinement in Ti45Al2Mn2Nb1B. Intermetallics 22, 68–76 (2012).

    Article  CAS  Google Scholar 

  29. A. Genc, R. Banerjee, D. Hill, and H.L. Fraser: Structure of TiB precipitates in laser deposited in situ Ti-6Al-4V-TiB composites. Mater. Lett. 60, 859–863 (2006).

    Article  CAS  Google Scholar 

  30. R. Banerjee, A. Genc, D. Hill, P.C. Collins, and H.L. Fraser: Nanoscale TiB precipitates in laser deposited Ti-matrix composites. Scr. Mater. 53, 1433–1437 (2005).

    Article  CAS  Google Scholar 

  31. J.R. Yang: Heat Transfer of High Nb Containing TiAl Alloy and its Effect on Structure Formation in Cold Crucible Directional Solidification (Harbin Institute of Technology, Harbin, 2013); p. 129.

    Google Scholar 

  32. H.M. Yang: Study on Microstructure Evolution of Ternary TiAl-5Nb Alloy During Directional Solidification (Harbin Institute of Technology, Harbin, 2010); p. 57.

    Google Scholar 

  33. L. Huang, P.K. Liaw, C.T. Liu, Y. Liu, and J.S. Huang: Microstructural evolution of (TiAl)+Nb+W+B alloy. Trans. Nonferrous Met. Soc. China 21, 2192–2198 (2011).

    Article  CAS  Google Scholar 

  34. C.Y. Nam, M.H. Oh, K.S. Kumar, and D.M. Wee: Effect of nitrogen on the mean lamellar thickness of fully lamellar TiAl alloys. Scr. Mater. 46, 441–446 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research was supported by National Basic Research Program of China (2011CB605504) and the Program of New Century Excellent Talents in University (NCET-12-0153) and National Natural Science of Foundation of China (51274076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruirun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Chen, R., Guo, J. et al. Effect of heat treatment on microstructure and mechanical properties of cast and directionally solidified high-Nb contained TiAl-based alloys. Journal of Materials Research 30, 3331–3342 (2015). https://doi.org/10.1557/jmr.2015.298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.298

Navigation