Skip to main content
Log in

Fracture behavior of precracked nanocrystalline materials with grain size gradients

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fracture behavior of precracked nanocrystals with grain size gradients is simulated using the molecular dynamics method. A large grain size gradient is found to elevate resistance to crack propagation and transform the fracture mode from intergranular to intragranular when the crack is obstructed by a coarse grain. But the intragranular crack is nipped in its bud due to the difficulty of intragranular fracture. However, intergranular fractures can be always kept in nanocrystals with a small grain size gradient. Both the Schmid factors for the slip systems of grains near the crack tip and the critical stress intensity factors are calculated, and energy partitioning is conducted to analyze the mechanisms behind this phenomenon. The research exhibits the key role of grain size gradient in improving the antifracture ability of nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. D. Farkas: Fracture resistance of nanocrystalline Ni. Metall. Mater. Trans. A 38A (13), 2168 (2007).

    CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).

    CAS  Google Scholar 

  3. T. Zhu and J. Li: Ultra-strength materials. Prog. Mater. Sci. 55 (7), 710 (2010).

    Google Scholar 

  4. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419 (6910), 912 (2002).

    CAS  Google Scholar 

  5. Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52 (6), 1699 (2004).

    CAS  Google Scholar 

  6. I.A. Ovid’Ko and T.G. Langdon: Enhanced ductility of nanocrystalline and ultrafine-grained metals. Rev. Adv. Mater. Sci. 30 (2), 103 (2012).

    Google Scholar 

  7. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331 (6024), 1587 (2011).

    CAS  Google Scholar 

  8. T. Hanlon, E.D. Tabachnikova, and S. Suresh: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27 (10–12), 1147 (2005).

    CAS  Google Scholar 

  9. H.F. Zhou and S.X. Qu: The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology 21 (3), 35706 (2010).

    Google Scholar 

  10. H.F. Zhou, S.X. Qu, and W. Yang: Toughening by nano-scaled twin boundaries in nanocrystals. Modell. Simul. Mater. Sci. Eng. 18 (6), 65002 (2010).

    Google Scholar 

  11. Y. Zhang, P.C. Millett, M. Tonks, and S.B. Biner: Deformation twins in nanocrystalline body-centered cubic Mo as predicted by molecular dynamics simulations. Acta Mater. 60 (18), 6421 (2012).

    CAS  Google Scholar 

  12. I.A. Ovid Ko and N.V. Skiba: Nanotwins induced by grain boundary deformation processes in nanomaterials. Scr. Mater. 71 (15), 33 (2014).

    Google Scholar 

  13. D. Farkas, H. Van Swygenhoven, and P.M. Derlet: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66 (6), 60101 (2002).

    Google Scholar 

  14. I.A. Ovid Ko and A.G. Sheinerman: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57 (7), 2217 (2009).

    Google Scholar 

  15. H.P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K. Nomura, A. van Duin, P. Vashishta, and Z.S. Yuan: Embrittlement of metal by solute segregation-induced amorphization. Phys. Rev. Lett. 104 (15), 155502 (2010).

    Google Scholar 

  16. L. Cao and C. Wang: Atomistic simulation for configuration evolution and energetic calculation of crack in body-centered-cubic iron. J. Mater. Res. 21 (10), 2542 (2006).

    CAS  Google Scholar 

  17. H. Xie, C. Wang, and T. Yu: Atomistic simulation of fracture in Ni3Al. J. Mater. Res. 23 (6), 1597 (2008).

    CAS  Google Scholar 

  18. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49 (14), 2713 (2001).

    CAS  Google Scholar 

  19. D. Chen: Computer model simulation study of nanocrystalline iron. Mater. Sci. Eng., A 190 (1), 193 (1995).

    Google Scholar 

  20. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 1 (1995).

    CAS  Google Scholar 

  21. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59 (5), 3393 (1999).

    CAS  Google Scholar 

  22. D. Faken and H. Jónsson: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2 (2), 279 (1994).

    CAS  Google Scholar 

  23. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (1), 15012 (2010).

    Google Scholar 

  24. J. Lu and K. Lu: Surface nanocrystallization (SNC) of materials and its effect on mechanical behavior. In Comprehensive Structural Integrity, I.M.O.R. Karihaloo ed.; Pergamon: Oxford, 2003; p. 495.

    Google Scholar 

  25. J. Xu, X.Z. Mao, Z.H. Xie, and P. Munroe: Damage-tolerant, hard nanocomposite coatings enabled by a hierarchical structure. J. Phys. Chem. C 115 (39), 18977 (2011).

    CAS  Google Scholar 

  26. H.Q. Li and F. Ebrahimi: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17 (16), 1969 (2005).

    CAS  Google Scholar 

  27. V. Yamakov, E. Saether, D.R. Phillips, and E.H. Glaessgen: Dynamic instability in intergranular fracture. Phys. Rev. Lett. 95 (1), 15502 (2005).

    CAS  Google Scholar 

  28. I.A. Ovid Ko: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42 (5), 1694 (2007).

    Google Scholar 

  29. Y. Zhang, P.C. Millett, M. Tonks, and B. Biner: Deformation-twin-induced grain boundary failure. Scr. Mater. 66 (2), 117 (2012).

    CAS  Google Scholar 

  30. V.A. Pozdnyakov and A.M. Glezer: Structural mechanisms of fracture of nanocrystalline materials. Phys. Solid State 47 (5), 817 (2005).

    CAS  Google Scholar 

  31. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51 (2), 387 (2003).

    CAS  Google Scholar 

  32. T. Zhou, X. Yang, and C. Chen: Quasicontinuum simulation of single crystal nano-plate with a mixed-mode crack. Int. J. Solids Struct. 46 (9), 1975 (2009).

    CAS  Google Scholar 

  33. G.M. Cheng, W.Z. Xu, W.W. Jian, H. Yuan, M.H. Tsai, Y.T. Zhu, Y.F. Zhang, and P.C. Millett: Dislocations with edge components in nanocrystalline bcc Mo. J. Mater. Res. 28 (13), 1820 (2013).

    CAS  Google Scholar 

  34. Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, and A.V. Hamza: Defective twin boundaries in nanotwinned metals. Nat. Mater. 12 (8), 697 (2013).

    CAS  Google Scholar 

  35. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57 (1), 1 (2012).

    CAS  Google Scholar 

  36. Y. Zhu, Z. Li, and M. Huang: Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scr. Mater. 68 (9), 663 (2013).

    CAS  Google Scholar 

  37. I.A. Ovid’Ko, A.G. Sheinerman, and E.C. Aifantis: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59 (12), 5023 (2011).

    Google Scholar 

  38. I.A. Ovid’Ko and A.G. Sheinerman: Nanoscale rotational deformation near crack tips in nanocrystalline solids. J. Phys. D: Appl. Phys. 45 (33), 335301 (2012).

    Google Scholar 

  39. X. Yang, T. Zhou, and C. Chen: Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void. Comput. Mater. Sci. 40 (1), 51 (2007).

    CAS  Google Scholar 

  40. J. Zhang and S. Ghosh: Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids 61 (8), 1670 (2013).

    CAS  Google Scholar 

  41. T. Shimokawa, M. Tanaka, K. Kinoshita, and K. Higashida: Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals. Phys. Rev. B 83 (21), 214113 (2011).

    Google Scholar 

  42. A. Uhnakova, J. Pokluda, A. Machova, and P. Hora: 3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III. Int. J. Fatigue 33 (12), 1564 (2011).

    CAS  Google Scholar 

  43. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100 (2), 025502 (2008).

    Google Scholar 

  44. D.H. Warner, W.A. Curtin, and S. Qu: Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat. Mater. 6 (11), 876 (2007).

    CAS  Google Scholar 

  45. H.F. Zhou, L.F. Zhang, and S.X. Qu: Temperature effect on critical shear stress for twin boundary migration. Comput. Mater. Sci. 60, 231 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, X. & Tian, X. Fracture behavior of precracked nanocrystalline materials with grain size gradients. Journal of Materials Research 30, 709–716 (2015). https://doi.org/10.1557/jmr.2015.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.18

Navigation