Skip to main content
Log in

Theoretical investigations on mechanical and thermal properties of MSiO4 (M = Zr, Hf)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this contribution, the structural, mechanical, and thermal properties of MSiO4 have been investigated theoretically and the anisotropy of elastic properties has been discussed in detail. The heterogeneous bonding nature was revealed from density functional theory computations and chemical bond theory (CBT). The Young’s modulus and shear modulus of MSiO4 were anisotropic and the anisotropy on different planes was quite different. The thermal expansion coefficients of MSiO4 estimated from CBT were 5.1 × 10−6 and 4.4 × 10−6 K−1 for ZrSiO4 and HfSiO4, respectively. These results were quite consistent with the experiments. The temperature dependent thermal conductivities of MSiO4 were estimated from Slack’s model, the minimum thermal conductivity was predicted to be 1.54 and 1.24 W m−1 K−1 for ZrSiO4 and HfSiO4, respectively. Our theoretical results show that MSiO4 are excellent thermal barrier materials with good tolerance to withstand the mechanical damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. C. Veytizou, J.F. Quinson, and Y. Jorand: Preparation of zircon bodies from amorphous precursor powder synthesized by sol-gel processing. J. Eur. Ceram. Soc. 22, 2901 (2002).

    CAS  Google Scholar 

  2. R.C. Ewing, W. Lutz, and W.J. Weber: Zircon: A host-phase for the disposal of weapons plutonium. J. Mater. Res. 10, 243 (1995).

    CAS  Google Scholar 

  3. X.Q. Cao, R. Vassen, and D. Stoever: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).

    CAS  Google Scholar 

  4. B. Yang, B.J. Luff, and P.D. Townsend: Cathodoluminescence of natural zircons. J. Phys.: Condens. Matter 4, 5617 (1992).

    CAS  Google Scholar 

  5. J.P. Crocombette and D. Ghaleb: Modeling the structure of zircon (ZrSiO4): Empirical potentials, ab initio electronic structure. J. Nucl. Mater. 257, 282 (1998).

    CAS  Google Scholar 

  6. M.J. Akhtar and S. Waseem: Atomistic simulation studies of zircon. Chem. Phys. 274, 109 (2001).

    CAS  Google Scholar 

  7. K. Robinson, G.V. Gibbs, and P.H. Ribbe: The structure of zircon: A comparison with garnet. Am. Mineral. 56, 782 (1971).

    CAS  Google Scholar 

  8. R. Terki, G. Bertrand, and H. Aourag: Full potential investigations of structural and electronic properties of ZrSiO4. Microelectron. Eng. 81, 514 (2005).

    CAS  Google Scholar 

  9. G.M. Rignanese, X. Gonze, and A. Pasquarello: First-principles study of structural, electronic, dynamical, and dielectric properties of zircon. Phys. Rev. B 63, 104305 (2001).

    Google Scholar 

  10. J.M. Pruneda, T.D. Archer, and E. Artacho: Intrinsic point defects and volume swelling in ZrSiO4 under irradiation. Phys. Rev. B 70, 104111 (2004).

    Google Scholar 

  11. J. Du, R. Devanathan, L.R. Corrales, and W.J. Weber: First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. Comput. Theor. Chem. 987, 62 (2012).

    CAS  Google Scholar 

  12. J.A. Speer and B.J. Cooper: Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates. Am. Mineral. 67, 804 (1982).

    CAS  Google Scholar 

  13. G-M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello: First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium. Phys. Rev. B 69, 184301 (2004).

    Google Scholar 

  14. P.P. Bose, R. Mittal, and S.L. Chaplot: Lattice dynamics and high pressure phase stability of zircon structured natural silicates. Phys. Rev. B 79, 174301 (2009).

    Google Scholar 

  15. K. Xiong, Y. Du, K. Tse, and J. Robertson: Defect states in the high-dielectric-constant gate oxide HfSiO4. J. Appl. Phys. 101, 024101 (2007).

    Google Scholar 

  16. Q. Liu, Z. Liu, L. Feng, H. Tian, and W. Zeng: First-principles investigations on structural, elastic, electronic, and optical properties of tetragonal HfSiO4. Braz. J. Phys. 42, 20 (2012).

    CAS  Google Scholar 

  17. W. van Westrenen, M.R. Frank, J.M. Hanchar, Y. Fei, R.J. Finch, and C.S. Zha: In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition. Am. Mineral. 89, 197 (2004).

    Google Scholar 

  18. S. Ono, Y. Tange, I. Katayama, and T. Kikegawa: Equations of state of ZrSiO4 phases in the upper mantle. Am. Mineral. 89, 185 (2004).

    CAS  Google Scholar 

  19. E. Knittle and Q. Williams: High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K. Am. Mineral. 78, 245 (1993).

    CAS  Google Scholar 

  20. Y. Shi, X. Huang, and D. Yan: Fabrication of hot-pressed zircon ceramics: Mechanical properties and microstructure. Ceram. Int. 23, 457 (1997).

    CAS  Google Scholar 

  21. T. Mori, H. Yamamura, H. Kobayashi, and T. Mitamura: Preparation of high-purity ZrSiO4, powder using sol-gel processing and mechanical properties of the sintered body. J. Am. Ceram. Soc. 75, 2420 (1992).

    CAS  Google Scholar 

  22. D. Gao, Y. Zhang, J. Fu, C. Xu, Y. Song, and X. Shi: Oxidation of zirconium diboride–silicon carbide ceramics under an oxygen partial pressure of 200 Pa: Formation of zircon. Corros. Sci. 52, 3297 (2010).

    CAS  Google Scholar 

  23. T.A. Parthasarathy, M.D. Petry, M.K. Cinibulk, T. Mathur, and M.R. Gruber: Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions. J. Am. Ceram. Soc. 96, 907 (2013).

    CAS  Google Scholar 

  24. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  25. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  27. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  28. D. Sanchez-Portal, E. Artacho, and J.M. Soler: Projection of plane-wave calculations into atomic orbitals. Solid State Commun. 95, 685 (1995).

    CAS  Google Scholar 

  29. M.D. Segall, R. Shah, C.J. Pickard, and M.C. Payne: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).

    CAS  Google Scholar 

  30. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).

    CAS  Google Scholar 

  31. V. Milman and M.C. Warren: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 (2001).

    CAS  Google Scholar 

  32. W. Voigt: Lehrbuch der Kristallphysik (Teubner, Leipzig, Germany, 1928).

    Google Scholar 

  33. A. Reuss: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  34. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).

    Google Scholar 

  35. D.J. Green: An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  36. D.R. Clarke: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67 (2003).

    Google Scholar 

  37. B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).

    CAS  Google Scholar 

  38. Y.C. Zhou, H.M. Xiang, and Z.H. Feng: Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12. J. Mater. Sci. Technol. 30, 631 (2014).

    CAS  Google Scholar 

  39. H.M. Xiang, Z.H. Feng, and Y.C. Zhou: Theoretical investigations on mechanical anisotropy and intrinsic thermal conductivity of YbAlO3. J. Eur. Ceram. Soc. 35, 1549 (2015).

    CAS  Google Scholar 

  40. H.M. Xiang, Z.H. Feng, and Y.C. Zhou: Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations. J. Mater. Res. 29, 1609 (2014).

    CAS  Google Scholar 

  41. O.L. Anderson: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).

    CAS  Google Scholar 

  42. G.A. Slack: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).

    CAS  Google Scholar 

  43. B.D. Sanditov, S.B. Tsydypov, and D.S. Sanditov: Relation between the grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53, 594 (2007).

    CAS  Google Scholar 

  44. H. Li, S. Zhou, and S. Zhang: The relationship between the thermal expansions and structures of ABO4 oxides. J. Solid State Chem. 180, 589 (2007).

    CAS  Google Scholar 

  45. C.B. Carter and M.G. Norton: Ceramic Materials: Science and Engineering (Springer, New York, 2007).

    Google Scholar 

  46. H. Özkan and J.C. Jamieson: Pressure dependence of the elastic constants of nonmetamict zircon. Phys. Chem. Minerals 2, 215 (1978).

    Google Scholar 

  47. S.L. Chaplot, R. Mittal, and N. Choudhury: Thermodynamic Properties of Solids: Experiment and Modeling (Wiley-VCH, Weinheim, Germany, 2010).

    Google Scholar 

  48. M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).

    Google Scholar 

  49. S.F. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  50. J. Musil, F. Kunc, H. Zeman, and H. Polakova: Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 154, 304 (2002).

    CAS  Google Scholar 

  51. J.Y. Wang, Y.C. Zhou, and Z.J. Lin: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).

    Google Scholar 

  52. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).

    CAS  Google Scholar 

  53. X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).

    CAS  Google Scholar 

  54. N.M. Rendtorff, S. Grasso, C. Hu, G. Suarez, E.F. Aglietti, and Y. Sakka: Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering. Ceram. Int. 38, 1793 (2012).

    CAS  Google Scholar 

  55. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Science Publications, Oxford, 1985).

    Google Scholar 

  56. J. Turley and G. Sines: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D: Appl. Phys. 4, 264 (1971).

    CAS  Google Scholar 

  57. E.C. Subbarao, D.K. Agrawal, H.A. McKinstry, C.W. Sallese, and R. Roy: Thermal expansion of compounds of zircon structure. J. Am. Ceram. Soc. 73, 1246 (1990).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Outstanding Young Scientist Foundation for Y.C. Zhou under Grant No. 59925208, and the National Natural Science Foundation of China under Grant No. U1435206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Zhou.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Feng, Z., Li, Z. et al. Theoretical investigations on mechanical and thermal properties of MSiO4 (M = Zr, Hf). Journal of Materials Research 30, 2030–2039 (2015). https://doi.org/10.1557/jmr.2015.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.172

Navigation