Skip to main content
Log in

Effect of (Bi0.5K0.5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0.5Na0.5)NbO3-based lead-free piezoelectrics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The (1 − x) [0.94(K0.5Na0.5)NbO3–0.06LiNbO3]–x(Bi0.5K0.5)TiO3 (abbreviated as: KNLN6−xBKT, x = 0−0.05) lead-free piezoelectric ceramics were prepared using conventional solid sintering method. The effects of BKT on the phase structure, electrical properties, temperature stability, and fatigue behavior of KNLN6 ceramics were systematically studied. Results show that BKT substitution into KNLN6 induces a phase transition from coexistence of orthorhombic and tetragonal phases to a single tetragonal phase with a normal-relaxor ferroelectric transformation and correspondingly shifts the polymorphic phase transition below room temperature. Accordingly, the temperature stability of the properties is significantly improved, and a flat, temperature stable behavior over the temperature range of 25–150 °C is observed in BKT-modified ceramics. Temperature-dependent structural analysis suggests that the good properties insensitive to temperature of the modified samples can be ascribed to the stable tetragonal phase over a wide temperature range, evident by the almost unchanged tetragonality c/a ratio with temperature. Moreover, the BKT-modified ceramics not only exhibit temperature-independent characteristic but also possess fatigue-free behavior. All the electric parameters, including unipolar/bipolar strain S, remnant polarization Pr, permittivity εr, and large signal d33*, display no degradation up to 105 switching cycles. The exceptionally good fatigue resistance and temperature stable behavior make the modified KNN-based materials excellent candidates for lead-free actuators and transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, and F.Z. Yao: (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).

    Article  CAS  Google Scholar 

  2. W. Liu and X. Ren: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  4. X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, and X.Q. Wang: Giant piezoelectricity in potassium−sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905 (2014).

    Article  CAS  Google Scholar 

  5. X.J. Cheng, J.G. Wu, X.J. Lou, X.J. Wang, X.P. Wang, D.Q. Xiao, and J.G. Zhu: Achieving both giant d33 and high Tc in potassium−sodium niobate ternary system. ACS Appl. Mater. Interfaces 6, 750 (2014).

    Article  CAS  Google Scholar 

  6. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter: Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005).

    Article  Google Scholar 

  7. S.J. Zhang, R. Xia, and T.R. Shrout: Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. Appl. Phys. Lett. 91, 132913 (2007).

    Article  Google Scholar 

  8. D.M. Lin and K.W. Kwok: Phase transition, dielectric and piezoelectric properties of K0.5Na0.5NbO3–CaTi0.9Zr0.1O3 lead-free ceramics. J. Mater. Sci. 47, 397 (2012).

    Article  CAS  Google Scholar 

  9. J. Fu, R.Z. Zuo, and X.Y. Gao: Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl. Phys. Lett. 103, 182907 (2013).

    Article  Google Scholar 

  10. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S.J. Zhang, and T.R. Shrout: Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88, 212908 (2006).

    Article  Google Scholar 

  11. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li, and Z.B. Pei: Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3–(Bi0.5K0.5)TiO3 lead-free ceramics. J. Phys. D: Appl. Phys. 41, 115413 (2008).

    Article  Google Scholar 

  12. E.K. Akdogan, K. Kerman, M. Abazari, and A. Safari: Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008).

    Article  Google Scholar 

  13. S.J. Zhang, R. Xia, H. Hao, H.X. Liu, and T.R. Shrout: Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl. Phys. Lett. 92, 152904 (2008).

    Article  Google Scholar 

  14. F.Z. Yao, K. Wang, and J.F. Li: Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys. 113, 174105 (2013).

    Article  Google Scholar 

  15. J.G. Wu, D.Q. Xiao, Y.Y. Wang, W.J. Wu, B. Zhang, J. Li, and J.G. Zhu: CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scr. Mater. 59, 750 (2008).

    Article  CAS  Google Scholar 

  16. T.A. Skidmore, T.P. Comyn, and S.J. Milne: Temperature stability of lead-free piezoelectric ceramics. Appl. Phys. Lett. 94, 222902 (2009).

    Article  Google Scholar 

  17. J.G. Hao, Z.J. Xu. R.Q. Chu, Y.J. Zhang, Q. Chen, W. Li, P. Fu, G.Z. Zang, G.R. Li, and Q.R. Yin: Enhanced temperature stability of (1−x) (K0.5Na0.5)0.94Li0.06NbO3x(Bi0.5Na0.5)TiO3 lead-Free piezoelectric ceramics. J. Electron. Mater. 39, 347 (2010).

    Article  CAS  Google Scholar 

  18. D.C. Lupascu and J. Rödel: Fatigue in bulk lead zirconate titanate actuator materials. Adv. Eng. Mater. 7, 882 (2005).

    Article  CAS  Google Scholar 

  19. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka: Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. J. Appl. Phys. 44, 5040 (2005).

    Article  CAS  Google Scholar 

  20. J.G. Hao, W.F. Bai, and B. Shen, J.W. Zhai: Improved piezoelectric properties of (KxNa1−x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering. J. Alloys. Compd. 534, 13 (2012).

    Article  CAS  Google Scholar 

  21. X.J. Cheng, J.G. Wu, X.P. Wang, B.Y. Zhang, J.G. Zhu, D.Q. Xiao, X.J. Wang, X.J. Lou, and W.F. Liang: Lead-free piezoelectric ceramics based on (0.97-x) K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xBi0.5Na0.5TiO3 ternary system. J. Appl. Phys. 114, 124107 (2013).

    Article  Google Scholar 

  22. E. Nakamura, T. Mitsui, and J. Furuichi: A note on the classification of ferroelectric. J. Phys. Soc. Jpn. 18, 1477 (1963).

    Article  Google Scholar 

  23. K. Uchino and S. Nomura: Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectr., Lett. Sect. 44, 55 (1982).

    Article  CAS  Google Scholar 

  24. Y. Guo, K. Kakimoto, and H. Ohsato: Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics. J. Phys. Chem. Solids 65, 1831 (2004).

    Article  CAS  Google Scholar 

  25. J.T.S. Irvine, D.C. Sinclair, and A.R. West: Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2, 132 (1990).

    Article  CAS  Google Scholar 

  26. E. Atamanik and V. Thangadurai: Study of the dielectric properties in the NaNbO3–KNbO3–In2O3 system using AC impedance spectroscopy. Mater. Res. Bull. 44, 931 (2009).

    Article  CAS  Google Scholar 

  27. M. Boukriba, F. Sediri, and N. Gharbi: Hydrothermal synthesis and electrical properties of NaNbO3. Mater. Res. Bull. 48, 574 (2013).

    Article  CAS  Google Scholar 

  28. J.R. Cheng, G.Y. Shi, Y.F. Qi, J.G. Chen, and S.W. Yu: Impendence spectroscopy study of high temperature BiFeO3-PbTiO3 based ceramics. J. Shanghai Univ. (Nat. Sci.) 17, 535 (2011).

    CAS  Google Scholar 

  29. T.Y. Li, H.Q. Fan, C.B. Long, G.Z. Dong, and S.J. Sun: Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates. J. Alloys Compd. 609, 60 (2014).

    Article  CAS  Google Scholar 

  30. H.T. Zhang, H.X. Yan, and M.J. Reece: The effect of Nd doping on the properties of Bi3NbTiO9 ceramics. J. Appl. Phys. 106, 044106 (2009).

    Article  Google Scholar 

  31. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, and H. Yan. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J. Adv. Dielectr. 3, 1350007 (2013).

    Article  Google Scholar 

  32. H.X. Yan, F. Inam, G. Viola, H. Ning, H.T. Zhang, Q.H. Jiang, T. Zeng, Z.P. Gao, and M.J. Reece: The contribution of electrical conducticity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107 (2011).

    Article  CAS  Google Scholar 

  33. A.S. George: The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.: Condens. Matter 15, R367 (2003).

    Google Scholar 

  34. Q. Tan and D. Viehland: Grain size dependence of relaxor characteristics in La-modified lead zirconate titanate. Ferroelectrics 193, 157 (1997).

    Article  CAS  Google Scholar 

  35. R. Dittmer, E.M. Anton, W. Jo, H. Simons, J.E. Daniels, M. Hoffman, J. Pokorny, I.M. Reaney, and J. Rödel: A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J. Am. Ceram. Soc. 95, 3519 (2012).

    Article  CAS  Google Scholar 

  36. L. Wu, D.Q. Xiao, J.G. Wu, Y. Sun, D.M. Lin, J.G. Zhu, P. Yu, Y. Zhuang, and Q. Wei: Good temperature stability of K0.5Na0.5NbO3 based lead-free ceramics and their applications in buzzers. J. Eur. Ceram. Soc. 28, 2963 (2008).

    Article  CAS  Google Scholar 

  37. F.Z. Yao, J. Glaum, K. Wang, W. Jo, J. Rödel, and J.F. Li: Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics. Appl. Phys. Lett. 103, 192907 (2013).

    Article  Google Scholar 

  38. K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J-F. Li, and J. Rödel: Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23, 4079 (2013).

    Article  CAS  Google Scholar 

  39. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Röodel: Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 29, 71 (2012).

    Article  CAS  Google Scholar 

  40. J.Y. Li, R.C. Rogan, E. Ustundag, and K. Bhattacharya: Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 51402144, 51372110, 51302124), the Project of Shandong Province Higher Educational Science and Technology Program (Grant Nos. J14LA11 and J14LA10), the National High Technology Research and Development Program of China (No. 2013AA030801), Science and Technology Planning Project of Guangdong Province, China (No. 2013B091000001), Independent innovation and achievement transformation in Shandong Province special, China (No. 2014CGZH0904), the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2012EMM004 and ZR2014JL030), and the Research Foundation of Liaocheng University (Nos. 318051407, 318011301, 318011306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Xu, Z., Chu, R. et al. Effect of (Bi0.5K0.5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0.5Na0.5)NbO3-based lead-free piezoelectrics. Journal of Materials Research 30, 2018–2029 (2015). https://doi.org/10.1557/jmr.2015.169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.169

Navigation