Skip to main content
Log in

Transparent electrodes made from carbon nanotube polyelectrolytes and application to acidic environments

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)-based transparent conducting films (TCFs) have been prepared by filtration of (i) surfactant-based aqueous dispersions and (ii) organic solutions obtained by reductive dissolution of an alkali metal salt of polyelectrolyte nanotubes. Starting from the same source of nanotubes, it is shown that films obtained by the reductive dissolution route present up to one order of magnitude better conductivity for the same transmittance. Light scattering experiments show that the average CNT length is much larger for the reductive dissolution-based organic solutions than for the sonication aided aqueous dispersions. Values of surface resistivity of 200 ohm per square have been obtained for 80% transmittance. Additionally, it is shown that the CNT-based TCFs are undistinguishable from indium tin oxide (ITO) as electrodes in regular environments, whereas they perform efficiently in acidic environments where ITO fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, and R. Martel: Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88, 183104 (2006).

    Google Scholar 

  2. E. Artukovic, M. Kaempgen, D.S. Hecht, S. Roth, and G. Grüner: Transparent and flexible carbon nanotube transistors. Nano Lett. 5, 757–760 (2005).

    CAS  Google Scholar 

  3. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, and A. Rinzler: Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    CAS  Google Scholar 

  4. R. Andrews, D. Jacques, M. Minot, and T. Rantell: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287, 395–403 (2002).

    CAS  Google Scholar 

  5. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    CAS  Google Scholar 

  6. L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derré, A. Kuhn, M. Maugey, and P. Poulin: Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 220, 3487–3495 (2010).

    Google Scholar 

  7. T. Fukushima, K. Asaka, A. Kosaka, and T. Aida: Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. Engl. 44, 2410–2413 (2005).

    CAS  Google Scholar 

  8. C. Bartholome, A. Derré, O. Roubeau, C. Zakri, and P. Poulin: Electromechanical properties of nanotube–PVA composite actuator bimorphs. Nanotechnology 19, 325501 (2008).

    Google Scholar 

  9. G.B. Blanchet, C.R. Fincher, and F. Gao: Polyaniline nanotube composites: A high-resolution printable conductor. Appl. Phys. Lett. 82, 1290–1292 (2003).

    CAS  Google Scholar 

  10. K. Saint-Aubin, P. Poulin, H. Saadaoui, M. Maugey, and C. Zakri: Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Langmuir 25, 13206–13211 (2009).

    CAS  Google Scholar 

  11. K. Shen, S. Curran, H. Xu, S. Rogelj, Y. Jiang, J. Dewald, and T. Pietrass: Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: A combined TEM and resonant micro-raman spectroscopy study. J. Phys. Chem. B 10, 4455–4463 (2005).

    Google Scholar 

  12. K.L. Lu, R.M. Lagon, Y.K. Chen, M.L.H. Green, and P.J.F. Harris: Mechanical damage of carbon nanotubes by ultrasound. Carbon 34, 814–816 (1996).

    CAS  Google Scholar 

  13. A. Lucas, C. Zakri, M. Maugey, M. Pasquali, P. vd Schoot, and P. Poulin: Kinetics of nanotube and microfiber scission under sonication. J. Phys. Chem. C 113, 20599–20605 (2009).

    CAS  Google Scholar 

  14. G. Pagani, M.J. Green, P. Poulin, and M. Pasquali: Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. U. S. A. 109, 11599–11604 (2012).

    CAS  Google Scholar 

  15. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, and P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

    Google Scholar 

  16. S. Fogden, C. Howard, R.K. Heenan, N.T. Skipper, and M.S.P. Shaffer: Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6, 54–62 (2012).

    CAS  Google Scholar 

  17. S. Fogden, K. Kim, C. Ma, and G. McFarlane: Scalable single walled carbon nanotube separation: From process to product. NSTI-Nanotech, Boston, MA, 2011; pp. 163–166.

  18. C. Jiang, A. Saha, C. Xiang, C.C. Young, J.M. Tour, M. Pasquali, and A.A. Marti: Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7, 4503–4510 (2013).

    CAS  Google Scholar 

  19. B. Vigolo, C. Hérold, J-F. Marêché, P. Bourson, S. Margueron, J. Ghanbaja, and E. McRae: Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J. Phys. Chem. C 113, 7624–7628 (2009).

    CAS  Google Scholar 

  20. P. Petit, C. Mathis, C. Journet, and P. Bernier: Tuning and monitoring the electronic structure of carbon nanotubes. Chem. Phys. Lett. 305, 370–374 (1999).

    CAS  Google Scholar 

  21. D. Voiry, C. Drummond, and A. Penicaud: Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7, 7998 (2011).

    CAS  Google Scholar 

  22. A. Pénicaud, F. Dragin, G. Pécastaings, M. He, and E. Anglaret: Concentrated solutions of individualized single walled carbon nanotubes. Carbon 67, 360–367 (2014).

    Google Scholar 

  23. M. Senthilkumar, J. Mathiyarasu, J. Joseph, K.L.N. Phani, and V. Yegnaraman: Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization. Mater. Chem. Phys. 108, 403–407 (2008).

    CAS  Google Scholar 

  24. K.E. Lee, M. Wang, E.J. Kim, and S.H. Hahn: Structural, electrical and optical properties of sol–gel AZO thin films. Curr. Appl. Phys. 9, 683–687 (2009).

    Google Scholar 

  25. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Sng, Y-J. Kim, K.S. Kim, B. Özyilmaz, J-H. Ahn, B.H. Hong, and S. Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    CAS  Google Scholar 

  26. M.G. Kang, M.S. Kim, J. Kim, and L.J. Guo: Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20, 4408–4413 (2008).

    CAS  Google Scholar 

  27. D.S. Hecht, L. Hu, and G. Irvin: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011).

    CAS  Google Scholar 

  28. A. Kumar and C. Zhou: The race to replace tin-doped indium oxide: Which material will win? ACS Nano 4, 11–14 (2010).

    CAS  Google Scholar 

  29. T. Minami and T. Miyata: Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films. Thin Solid Films 517, 1474–1477 (2008).

    CAS  Google Scholar 

  30. Y. Zhou, L. Hu, and G. Grüner: A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88, 12 (2006).

    Google Scholar 

  31. B. Dan, G.C. Irvin, and M. Pasquali: Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3, 835–843 (2009).

    CAS  Google Scholar 

  32. M.D. Lima, M.J. de Andrade, C.P. Bergmann, and S. Roth: Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. J. Mater. Chem. 18, 776–779 (2008).

    CAS  Google Scholar 

  33. Y.I. Song, C.M. Yang, D.Y. Kim, H. Kanoh, and K. Kaneko: Flexible transparent conducting single-wall carbon nanotube film with network bridging method. J. Colloid Interface Sci. 318, 365–371 (2008).

    CAS  Google Scholar 

  34. C.L. Pint, Y.Q. Xu, M. Pasquali, and R.H. Hauge: Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2, 1871–1878 (2008).

    CAS  Google Scholar 

  35. F. Mirri, A.W.K. Ma, T.T. Hsu, N. Behabtu, S.L. Eichmann, C.C. Young, D.E. Tsentalovich, and M. Pasquali: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6, 9737–9744 (2012).

    CAS  Google Scholar 

  36. S. Badaire, P. Poulin, M. Maugey, and C. Zakri: In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20, 10367–10370 (2004).

    CAS  Google Scholar 

  37. A.M. Shetty, G.M.H. Wilkins, J. Nanda, and M.J. Solomon: Multiangle depolarized dynamic light scattering of short functionalized single-walled carbon nanotubes. J. Phys. Chem. C 113, 7129 (2009).

    CAS  Google Scholar 

  38. A. Pénicaud, P. Petit, and J.E. Fischer: Doped carbon nanotubes. In Carbon Meta-Nanotubes: Synthesis, Properties and Applications, M. Monthioux ed. (John Wiley & Sons, Hoboken, NJ, 2012); pp. 41, 111.

    Google Scholar 

  39. F. Khoerunnisa, A. Morelos-Gomez, H. Tanaka, T. Fujimori, D. Minami, R. Kukobat, T. Hayashi, S.Y. Hong, Y.C. Choi, M. Miyahara, M. Terrones, M. Endo, and K. Kaneko: Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. Faraday Discuss. 173, 145–156 (2014).

    CAS  Google Scholar 

  40. C. Li, E.T. Thostenson, and T-W. Chou: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 91, 223114 (2007).

    Google Scholar 

  41. Y. Ma, W. Cheung, D. Wei, A. Bogozi, P.L. Chiu, L. Wang, F. Pontoriero, R. Mendelsohn, and H. He: Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer. ACS Nano 2, 1197–1204 (2008).

    CAS  Google Scholar 

  42. S.B. Yang, B-S. Kong, D-H. Jung, Y-K. Baek, C-S. Han, S-K. Oh, and H-T. Jung: Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3, 1361–1373 (2011).

    CAS  Google Scholar 

  43. D. Hecht, L. Hu, and G. Grüner: Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

    Google Scholar 

  44. D.T.N. Chen, K. Chen, L.A. Hough, M.F. Islam, and A.G. Yodh: Rheology of carbon nanotube networks during gelation. Macromolecules 43, 2048 (2010).

    CAS  Google Scholar 

  45. D. Simien, J.A. Fagan, W. Luo, J.F. Douglas, K. Migler, and J. Obrzut: Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano 2, 1879 (2008).

    CAS  Google Scholar 

  46. R.M. Snider, M. Ciobanu, A.E. Rue, and D.E. Cliffel: A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal. Chim. Acta. 609, 44–52 (2008).

    CAS  Google Scholar 

  47. L.H. Nguyen, T.V. Phi, P.Q. Phan, H.N. Vu, C. Nguyen Duc, and F. Fossard: Synthesis of multi-walled carbon nanotubes for NH3 gas detection. Phys. E 37, 54–57 (2007).

    CAS  Google Scholar 

  48. H. Xu, Q. Zheng, P. Yang, J. Liu, and L. Jin: Sensitive voltammetric detection of trace heavy metals in real water using multi-wall carbon nanotubes/nafion composite film electrode. Chin. J. Chem. 29, 805–812 (2011).

    CAS  Google Scholar 

  49. M. Grätzel: Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Google Scholar 

  50. J.E. Trancik, S.C. Barton, and J. Hone: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982–987 (2008).

    CAS  Google Scholar 

  51. D. Noureldine, T. Shoker, M. Musameh, and T.H. Ghaddar: Investigation of carbon nanotube webs as counter electrodes in a new organic electrolyte based dye sensitized solar cell. J. Mater. Chem. 22, 862–869 (2012).

    CAS  Google Scholar 

  52. L. Kavan: Exploiting nanocarbons in dye-sensitized solar cells. Top. Curr. Chem. 348, 53–93. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes, M. Marcaccio and F. Paolucci eds. (Springer, Berlin Heidelberg, Germany, 2014).

    Google Scholar 

  53. M.J. Alam and D.C. Cameron: Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films 377–378, 455–459 (2000).

    Google Scholar 

  54. J. Stotter, Y. Show, S. Wang, and G. Swain: Comparison of the electrical, optical, and electrochemical properties of diamond and indium tin oxide thin-film electrodes. Chem. Mater. 17, 4880–4888 (2005).

    CAS  Google Scholar 

  55. F. Valentini, A. Amine, S. Orlanducci, M.L. Terranova, and G. Palleschi: Carbon nanotube purification: Preparation and characterization of carbon nanotube paste electrodes. Anal. Chem. 75, 5413–5421 (2003).

    CAS  Google Scholar 

  56. L. Maillaud, C. Zakri, I. Ly, A. Pénicaud, and P. Poulin: Conductivity of transparent electrodes made from interacting nanotubes. Appl. Phys. Lett. 103, 263106 (2013).

    Google Scholar 

  57. S. Broersma: Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 1626 (1960).

    CAS  Google Scholar 

  58. S. Broersma: Viscous force and torque constants for a cylinder. J. Chem. Phys. 74, 6989 (1981).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

AC thanks Arkema and l’Association Nationale pour la Recherche et la Technologie (ANRT) for a PhD grant. Support from the Agence Nationale de la Recherche (IMPEC Project) is acknowledged. AP thanks Dr H. Saadaoui for the inset of Fig. 1(a) and the Aquitaine region for a grant to support collaboration with the Emilia Romagna region. This work has been performed within the framework of the GDR-I 3217 “graphene and nanotubes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Pénicaud.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catheline, A., Paolucci, F., Valenti, G. et al. Transparent electrodes made from carbon nanotube polyelectrolytes and application to acidic environments. Journal of Materials Research 30, 2009–2017 (2015). https://doi.org/10.1557/jmr.2015.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.166

Navigation