Skip to main content
Log in

Nano/micro mechanics study of nanoindentation on thin Al/Pd films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The finite element method is used to simulate indentation with a 100 nm spherical indenter on Al/Pd multilayer thin films and Al and Pd monolayer thin films. The elastic/plastic properties of bulk Al and Pd and the material formulation are obtained by molecular dynamics simulations of tensile and indentation loadings. Hill’s plasticity with isotropic hardening is found to best represent the stress–strain response of both bulk Al and Pd. The Pd monolayers appear the hardest and the Al monolayers the softest. The indentation hardness of both monolayered and multilayered films is found to increase with the indentation depth and appears independent of the layer order and thickness in the multilayer films. The hardness values determined by the finite element method simulations are close to those obtained using the well-known formula of Field and Swain. No hardness enhancement in very thin multilayered films (3–5 nm per layer) is evident, in contrast to experimental reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. J. Field and M. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297–306 (1993).

    Article  CAS  Google Scholar 

  2. H. Barshilia and K. Rajam: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155 (2–3), 195 (2002).

    Article  CAS  Google Scholar 

  3. R. Cammarata, T. Schlesinger, C. Kim, S. Qadri, and A. Edelstein: Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl. Phys. Lett. 56, 1862 (1990).

    Article  CAS  Google Scholar 

  4. P. Dayal, N. Savvides, and M. Hoffman: Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films 517, 3698 (2009).

    Article  CAS  Google Scholar 

  5. B. Kang, H. Kim, O. Kwon, and S. Hong: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scr. Mater. 57, 703 (2007).

    Article  CAS  Google Scholar 

  6. S. Lehoczky: Strength enhancement in thin-layered Al-Cu laminates. J. Appl. Phys. 49 (11), 5479 (1978).

    Article  CAS  Google Scholar 

  7. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury: Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scr. Mater. 39 (4–5), 555 (1998).

    Article  CAS  Google Scholar 

  8. P. Yashar and W. Sproul: Nanometer scale multilayered hard coatings. Vacuum 55 (3–4), 179 (1999).

    Article  CAS  Google Scholar 

  9. Y.P. Li, X.F. Zhu, J. Tan, B. Wu, and G.P. Zhang: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89 (1), 66 (2009).

    Article  CAS  Google Scholar 

  10. M. Liu, F. Ma, P. Huang, J. Zhang, and K. Xu: Scale dependent plastic deformation of nanomultilayers with competitive effects of interphase boundary and grain boundary. Mater. Sci. Eng., A 477, 295 (2008).

    Article  Google Scholar 

  11. A. Misra, J. Hirth, and R. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  12. W. Oliver and G. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564 (1992).

    Article  CAS  Google Scholar 

  13. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  14. L. Shen and Z. Chen: An investigation of the effect of interfacial atomic potential on the stress transition in thin films. Modell. Simul. Mater. Sci. Eng. 12, S347 (2004).

    Article  CAS  Google Scholar 

  15. M. Finnis and J. Sinclare: A simple empirical N-body potential for transition metals. Philos. Mag. A 50 (1), 45 (1984).

    Article  CAS  Google Scholar 

  16. M. Daw and M. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  17. X. Dai, Y. Kong, and J. Li: Long range empirical potential model—Application to fcc transition metals and alloys. Phys. Rev. B 75 (10), 104101 (2007).

    Article  Google Scholar 

  18. X. Dai, J. Li, and Y. Kong: Long range empirical potential for the bcc structured transition metals. Phys. Rev. B 75 (5), 052102 (2007).

    Article  Google Scholar 

  19. Y. Dai, J. Li, and B. Liu: Long-range empirical potential model: Extension to hexagonal close-packed metals. J. Phys.: Condens. Matter 21, 385402 (2009).

    CAS  Google Scholar 

  20. J. Li, X. Dai, S. Liang, K. Tai, Y. Kong, and B. Liu: Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 455 (1–3), 1 (2008).

    Article  CAS  Google Scholar 

  21. Y. Kong and L. Shen: Al-Pd interatomic potential and its application to nanoscale multilayer thin films. Mater. Sci. Eng., A 530, 73 (2001).

    Article  Google Scholar 

  22. Y. Kong and L. Shen: Strengthening mechanism of metallic nanoscale multilayer with negative enthalpy of mixing. J. Appl. Phys. 110 (7), 073522 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge the support they received from the ARC Centre of Excellence for Design in Light Metals. All the MD simulations were carried out on the supercomputers in NCI National Facilities in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Vodenitcharova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodenitcharova, T., Kong, Y., Shen, L. et al. Nano/micro mechanics study of nanoindentation on thin Al/Pd films. Journal of Materials Research 30, 699–708 (2015). https://doi.org/10.1557/jmr.2015.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.10

Navigation