Skip to main content
Log in

Resonant Bragg structures based on III-nitrides

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We demonstrate a resonant Bragg structure formed by quasi-two-dimensional excitons in periodic systems of InGaN quantum wells (QWs) separated by GaN barriers. When the Bragg resonance and exciton–polariton resonance are tuned to each other, the medium exhibits an exciton-mediated resonantly enhanced optical Bragg reflection. The enhancement factor appeared to be largest for the system of 60 QWs. Owing to a high binding energy and oscillator strength of the excitons in InGaN QWs, the resonant enhancement was achieved at room temperature. The samples were grown by the metal–organic vapor-phase epitaxy (MOVPE) on GaN-on-sapphire templates. The most important technological problem of the developed structures is inhomogeneous broadening of the excitonic states due to nonuniform chemical composition of the QWs driven by InN–GaN phase separation trend. We addressed this problem by variation of the vapor pressure, growth rate, growth interactions, and admixing of hydrogen during the MOVPE. The lowest width of 74 meV at room temperature and 41 meV at 77 K was achieved for the excitonic emission line from a single InGaN QW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. E.L. Ivchenko, A.I. Nesviszhskii, and S. Jorda: Bragg reflection of light from quantum-well structures. Phys. Solid State 36, 1156 (1994).

    Google Scholar 

  2. V.V. Chaldyshev, A.S. Bolshakov, E.E. Zavarin, A.V. Sakharov, W.V. Lundin, A.F. Tsatsulnikov, M.A. Yagovkina, T. Kim, and Y. Park: Optical lattices of InGaN quantum well excitons. Appl. Phys. Lett. 99, 251103 (2011).

    Article  Google Scholar 

  3. A.S. Bolshakov, V.V. Chaldyshev, E.E. Zavarin, A.V. Sakharov, W.V. Lundin, A.F. Tsatsulnikov, and M.A. Yagovkina: Resonance Bragg structure with double InGaN quantum wells. Phys. Solid State 55, 1817–1820 (2013).

    Article  CAS  Google Scholar 

  4. M.A. Moram, R.A. Oliver, M.J. Kappers, and C.J. Humphreys: The spatial distribution of threading dislocations in gallium nitride films. Adv. Mater. 21, 3941–3944 (2009).

    Article  CAS  Google Scholar 

  5. Y-S. Choi, J-H. Park, S-S. Kim, H-J. Song, S-H. Lee, J-J. Jung, and B-T. Lee: Effects of dislocations on the luminescence of GaN/InGaN multi-quantum-well light-emitting-diode layers. Mater. Lett. 58, 2614–2617 (2004).

    Article  CAS  Google Scholar 

  6. M. Kumar, J. Park, Y. Lee, S. Chung, Ch. Hong, and E. Suh: Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth. Jpn. J. Appl. Phys. 47, 839–842 (2008).

    Article  CAS  Google Scholar 

  7. Yu. Musikhin, D. Gerthsen, D. Bedarev, N. Bert, W. Lundin, A. Tsatsul’nikov, A. Sakharov, A. Usikov, Zh. Alferov, I. Krestnikov, N. Ledentsov, A. Hoffmann, and D. Bimberg: Influence of metalorganic chemical vapor deposition growth conditions on In-rich nanoislands formation in InGaN/GaN structures. Appl. Phys. Lett. 80, 2099–2101 (2002).

    Article  CAS  Google Scholar 

  8. H. Shim, R. Choi, S. Jeong, L. Vinh, C-H. Hong, E-K. Suh, H. Lee, Y-W. Kim, and Y. Hwang: Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes. Appl. Phys. Lett. 81, 3552–3554 (2002).

    Article  CAS  Google Scholar 

  9. C. Soh, W. Liu, J. Teng, S. Chow, S. Ang, and S. Chua: Cool white III-nitride light emitting diodes based on phosphor-free indium-rich InGaN nanostructures. Appl. Phys. Lett. 92, 261909–261911 (2008).

    Article  Google Scholar 

  10. Y. Sun, Y-H. Choa, E-K. Suh, H. Lee, R. Choi, and Y. Hahn: Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer. Appl. Phys. Lett. 84, 49–51 (2004).

    Article  CAS  Google Scholar 

  11. S-K. Choi, J-M. Jang, S-H. Yi, J-A. Kim, and W-G. Jung: Fabrication and characterization of self-assembled InGaN quantum dots by periodic interrupted growth. Proc. SPIE 6479, 64791F (2007).

    Article  Google Scholar 

  12. L. Ji, Y. Su, S. Chang, S. Tsai, S. Hung, R. Chuang, Т. Fang, and T. Tsai: Growth of InGaN self-assembled quantum dots and their application to photodiodes. J. Vac. Sci. Technol., A 22, 792–795 (2004).

    Article  CAS  Google Scholar 

  13. R. Oliver, G. Briggs, M. Kappers, C. Humphreys, Sh. Yasin, J. Rice, J. Smith, and R. Taylor: InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. Appl. Phys. Lett. 83, 755–757 (2003).

    Article  CAS  Google Scholar 

  14. Q. Wang, T. Wang, J. Bai, A. Cullis, P. Parbrook, and F. Ranalli: Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. J. Appl. Phys. 103, 123522–123528 (2008).

    Article  Google Scholar 

  15. T-Ch. Wen, Sh-Ch. Lee, and W-I. Lee: Light-emitting diodes: Research, manufacturing, and applications. Proc. SPIE 4278, 141–149 (May 2001).

    Article  CAS  Google Scholar 

  16. A.F. Tsatsulnikov, W.V. Lundin, E.E. Zavarin, A.E. Nikolaev, A.V. Sakharov, V.S. Sizov, S.O. Usov, Yu.G. Musikhin, and D. Gerthsen: Influence of hydrogen on local phase separation in InGaN thin layers and properties of light-emitting structures based on them. Semiconductors 45, 271–276 (2011).

    Article  CAS  Google Scholar 

  17. A.F. Tsatsulnikov and W.V. Lundin: Stimulated formation of InGaN quantum dots. State-of-the-Art of Quantum Dot System Fabrications, Dr. Ameenah Al-Ahmadi ed.; ISBN: 978-953-51-0649-4, InTech, DOI: 10.5772/45971. Available from: http://www.intechopen.com/books/state-of-the-art-of-quantum-dot-system-fabrications/stimulated-formation-of-ingan-quantum-dots.2012.

  18. S.G. Petrosyan, V.V. Chaldyshev, and A.Y. Shik: Luminescence of inhomogeneous semiconducting solid-solutions. Sov. Phys. Semicond. 18, 980–984 (1984).

    Google Scholar 

  19. N.A. Sanford, A. Munkholm, M.R. Krames, A. Shapiro, I. Levin, A.V. Davydov, S. Sayan, L.S. Wielunski, and T.E. Madey: Refractive index and birefringence of InxGa1−xN films grown by MOCVD. Phys. Status Solidi C 2 (7), 2783–2786 (2005).

    Article  CAS  Google Scholar 

  20. M.M.Y. Leung, A.B. Djurisic, and E.H. Li: Refractive index of InGaN/GaN quantum well. J. Appl. Phys. 84 (11), 6312 (1998).

    Article  CAS  Google Scholar 

  21. G.R. Hayes, J.L. Staehli, U. Oesterle, B. Deveaud, R.T. Phillips, and C. Ciuti: Suppression of exciton-polariton light absorption in multiple quantum well Bragg structures. Phys. Rev. Lett. 83, 2837 (1999).

    Article  CAS  Google Scholar 

  22. M. Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, and S.W. Koch: Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841 (1999).

    Article  Google Scholar 

  23. D. Goldberg, L.I. Deych, A.A. Lisyansky, Zh. Shi, V.M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky: Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 3, 662 (2009).

    Article  CAS  Google Scholar 

  24. V.V. Chaldyshev, E.V. Kundelev, E.V. Nikitina, A.Yu. Egorov, and A.A. Gorbatsevich: Resonance reflection of light by a periodic system of excitons in GaAs/AlGaAs quantum wells. Semiconductors 46 (8), 1016–1019 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Ministry of Science and Education of Russia (agreement No. 02.G25.31.0014) and by the Russian Foundation for Basic Research (Grant No. 14-29-07243). The x-ray study was carried out by Joint Research Center “Material science and characterization in advanced technology” under financial support of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Chaldyshev.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshakov, A.S., Chaldyshev, V.V., Lundin, W.V. et al. Resonant Bragg structures based on III-nitrides. Journal of Materials Research 30, 603–608 (2015). https://doi.org/10.1557/jmr.2014.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.397

Navigation