Skip to main content
Log in

Mechanical properties and tensile fracture of Ti–Al–V alloy strip under electropulsing-induced phase change

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 September 2015

This article has been updated

Abstract

The effect of high-energy electropulsing treatment (EPT) on the microstructure evolution, mechanical properties, and fracture behavior of as-treated Ti–6Al–4V alloy strips was investigated. EPT was found to accelerate phase transition and microstructure evolution of quasi-single-phase titanium alloy strips at a relatively low temperature, and obtain characteristic duplex microstructure and Widmanstatten microstructure. The EPT-induced microstructural changes increased elongation-to-failure remarkably with a slight decrease in tensile strength. Fracture surface observation and three-dimensional analysis showed that transition from small-shallow dimple colony to big-deep colony fracture took place with an increase in frequency of EPT. The rapid phase change of the Ti–6Al–4V alloy strip under EPT was attributed to the enhancement of nucleation rate and atomic diffusion resulting from the coupling of the thermal and athermal effects. It is supposed that EPT can provide a highly efficient method for the intermediate-softening annealing of titanium alloy sheet/strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

Change history

References

  1. M.J. Bermingham, S.D. McDonald, D.H. StJohn, and M.S. Dargusch: Segregation and grain refinement in cast titanium alloys. J. Mater. Res. 24, 1529 (2009).

    Article  CAS  Google Scholar 

  2. A.C. Lewis, S.M. Qidwai, D.J. Rowenhorst, and A.B. Geltmacher: Correlation between crystallographic orientation and mechanical response in a three-dimensional beta-Ti microstructure. J. Mater. Res. 26, 957 (2011).

    Article  CAS  Google Scholar 

  3. N.P. Gurao, S. Sethuraman, and S. Suwas: Evolution of texture and microstructure in commercially pure titanium with change in strain path during rolling. Metall. Mater. Trans. A 44, 1497 (2013).

    Article  CAS  Google Scholar 

  4. M. Nakai, M. Niinomi, J. Hieda, K. Cho, Y. Nagasawa, T. Konno, Y. Ito, Y. Itsumi, and H. Oyama: Reduction in anisotropy of mechanical properties of coilable (alpha plus beta)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications. Mater. Sci. Eng., A 594, 103 (2014).

    Article  CAS  Google Scholar 

  5. C.M. Liu, H.M. Wang, X.J. Tian, and H.B. Tang: Subtransus triplex heat treatment of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near beta titanium alloy. Mater. Sci. Eng., A 590, 30 (2014).

    Article  CAS  Google Scholar 

  6. G. Buffa, A. Ducato, and L. Fratini: FEM based prediction of phase transformations during friction stir welding of Ti6Al4V titanium alloy. Mater. Sci. Eng., A 581, 56 (2013).

    Article  CAS  Google Scholar 

  7. Z.K. Yao, H.Z. Guo, C. Yang, Y.G. Guo, and M.Y. Su: Effects of the interaction of deformation and phase change on microstructure and mechanical properties of Ti-17 alloy. Rare Metal Mater. Eng. 32, 538 (2003).

    CAS  Google Scholar 

  8. M. Yan, M.S. Dargusch, T. Ebel, and M. Qian: A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti-6Al-4V and their impacts on ductility. Acta Mater. 68, 196 (2014).

    Article  CAS  Google Scholar 

  9. R.T. Huang, W.L. Huang, R.H. Huang, and L.W. Tsay: Effects of microstructures on the notch tensile fracture feature of heat-treated Ti-6Al-6V-2Sn alloy. Mater. Sci. Eng., A 595, 297 (2014).

    Article  CAS  Google Scholar 

  10. T. Okutani, Y. Kabeya, and H. Nagai: Thermoelectric n-type silicon germanium synthesized by unidirectional solidification in microgravity. J. Alloys Compd. 551, 607 (2013).

    Article  CAS  Google Scholar 

  11. V.E. Gromov, L.I. Gurevich, V.F. Kurilov, and T.V. Erilova: Influence of current pulses on the mobility and multiplication of dislocations in Zn. Strength Mater. 21, 1335 (1989).

    Article  Google Scholar 

  12. V.E. Gromov, S.V. Gorbunov, Y.F. Ivanov, S.V. Vorobiev, and S.V. Konovalov: Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 974 (2011).

    Article  CAS  Google Scholar 

  13. S.V. Konovalov, A.A. Atroshkina, Y.F. Ivanov, and V.E. Gromov: Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Mater. Sci. Eng., A 527, 3040 (2010).

    Article  Google Scholar 

  14. Y.H. Zhu, S. To, W. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang: Electropulsing-induced phase transformations in a Zn-Al-based alloy. J. Mater. Res. 24, 2661 (2009).

    Article  CAS  Google Scholar 

  15. Y.B. Jiang, G.Y. Tang, C. Shek, Y.H. Zhu, and Z.H. Xu: On the thermodynamics and kinetics of electropulsing induced dissolution of beta-Mg17Al12 phase in an aged Mg-9Al-1Zn alloy. Acta Mater. 57, 4797 (2009).

    Article  CAS  Google Scholar 

  16. X. Ye, J. Kuang, X. Li, and G. Tang: Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J. Alloys Compd. 599, 1 (2014).

    Article  CAS  Google Scholar 

  17. X. Ye, G. Tang, G. Song, and J. Kuang: Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy. J. Mater. Res. 29, 1500 (2014).

    Article  CAS  Google Scholar 

  18. X. Ye, X. Li, G. Song, and G. Tang: Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 616, 173 (2014).

    Article  CAS  Google Scholar 

  19. X. Ye, Y. Yang, G. Song, and G. Tang: Enhancement of ductility, weakening of anisotropy behavior and local recrystallization in cold-rolled Ti-6Al-4V alloy strips by high-density electropulsing treatment. Appl. Phys. A (2014). doi:https://doi.org/10.1007/s00339-014-8655-1.

  20. X. Ye, Y. Yang, and G. Tang: Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment. Surf. Coat. Technol. 258, 467–484 (2014). doi:https://doi.org/10.1016/j.surfcoat.2014.08.052.

    Article  CAS  Google Scholar 

  21. Y. Xiaoxin and T. Guoyi: Effect of coupling asynchronous acoustoelectric effects on the corrosion behavior, microhardness and biocompatibility of biomedical titanium alloy strips. J. Mater. Sci.: Mater. Med. (2014). JMSM-D-14-00030R1.

  22. X. Ye, Y. Ye, and G. Tang: Effect of electropulsing treatment and ultrasonic striking treatment on the mechanical properties and microstructure of biomedical Ti-6Al-4V alloy. J. Mech. Behav. Biomed. Mater. 40, 287 (2014).

    Article  CAS  Google Scholar 

  23. X. Ye, T. Liu, Y. Ye, H. Wang, G. Tang, and G. Song: Enhanced grain refinement and microhardness of Ti–Al–V alloy by electropulsing ultrasonic shock. J. Alloys Compd. 621, 66–70 (2015). doi:https://doi.org/10.1016/j.jallcom.2014.09.192.

    Article  CAS  Google Scholar 

  24. J.F. Jiang, Y. Wang, and J.J. Qu: Microstructure and mechanical properties of AZ61 alloys with large cross-sectional size fabricated by multi-pass ECAP. Mater. Sci. Eng., A 560, 473 (2013).

    Article  CAS  Google Scholar 

  25. B.Q. Shi, R.S. Chen, and W. Ke: Solid solution strengthening in polycrystals of Mg-Sn binary alloys. J. Alloys Compd. 509, 3357 (2011).

    Article  CAS  Google Scholar 

  26. C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, and W.Q. Wang: A study on the microstructures and tensile properties of new beta high strength titanium alloy. J. Alloys Compd. 550, 23 (2013).

    Article  CAS  Google Scholar 

  27. K.E. Knipling and R.W. Fonda: Microstructural evolution in Ti-5111 friction stir welds. Metall. Mater. Trans. A 42, 2312 (2011).

    Article  CAS  Google Scholar 

  28. H. Shao, Y.Q. Zhao, P. Ge, and W.D. Zeng: Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure. Mater. Sci. Eng., A 586, 215 (2013).

    Article  CAS  Google Scholar 

  29. Z.H. Xu, G.Y. Tang, S.Q. Tian, F. Ding, and H.Y. Tian: Research of electroplastic rolling of AZ31 Mg alloy strip. J. Mater. Process. Technol. 182, 128 (2007).

    Article  CAS  Google Scholar 

  30. L. Haoming, T. Guoyi, J. Yanbin, X. Qing, S. Shiding, and L. Jianan: Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy. Mater. Sci. Eng., A 529, 138 (2011).

    Article  Google Scholar 

  31. Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang: Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy. Mater. Sci. Eng., A 501, 125 (2009).

    Article  Google Scholar 

  32. T.H. Zhou, H.S. Zurob, E. Essadiqi, and B. Voyzelle: Kinetics of delta-ferrite to austenite phase transformation in a two-phase Fe-Al-C alloy. Metall. Mater. Trans. A 42, 3349 (2011).

    Article  CAS  Google Scholar 

  33. M. Tanimura and Y. Koyama: Diffusion blocking, path variability, and bifurcation of the final state in the phase separation of Ni-3(Al,V)(1-delta) alloys. Phys. Rev. B 76, 126–130 (2007).

    Article  Google Scholar 

  34. R.F. Zhu, G.Y. Tang, S.Q. Shi, and M.W. Fu: Effect of electroplastic rolling on deformability and oxidation of NiTiNb shape memory alloy. J. Mater. Process. Technol. 213, 30 (2013).

    Article  CAS  Google Scholar 

  35. H. Cao, J.Y. Min, S.D. Wu, A.P. Xian, and J.K. Shang: Pinning of grain boundaries by second phase particles in equal-channel angularly pressed Cu-Fe-P alloy. Mater. Sci. Eng., A 431, 86 (2006).

    Article  Google Scholar 

  36. J.Y. Li, J.Y. Liu, M.J. Jin, and X.J. Jin: Grain size dependent phase stability of pulse electrodeposited nano-grained Co-Ni films. J. Alloys Compd. 5771, S151 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by National Natural Science Foundation of China (No. 50571048) and Shenzhen science and technology research funding project of China (No. SGLH20121008144756946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Tse, Z.T.H. & Tang, G. Mechanical properties and tensile fracture of Ti–Al–V alloy strip under electropulsing-induced phase change. Journal of Materials Research 30, 206–223 (2015). https://doi.org/10.1557/jmr.2014.367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.367

Navigation