Skip to main content
Log in

Model for electron-beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We use transmission electron microscopy (TEM) for in situ studies of electron-beam-induced crystallization behavior in thin films of amorphous transition metal silicon carbides based on Zr (group 4 element) and Nb (group 5). Higher silicon content stabilized the amorphous structure while no effects of carbon were detected. Films with Nb start to crystallize at lower electron doses than the Zr-containing ones. During the crystallization, equiaxed MeC grains are formed in all samples with larger grains for ZrC (∼5 nm) compared to NbC (∼2 nm). The phenomenon of self-terminating crystallization at a dimension of 2–5 nm is explained by segregation of Si that is expelled from growing metal carbide grains into the surrounding amorphous phase matrix, which limits diffusion of the metal and carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. T. Zehnder, J. Matthey, P. Schwaller, A. Klein, P.A. Steinmann, and J. Patscheider: Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering. Surf. Coat. Technol. 163, 238 (2003).

    Article  Google Scholar 

  2. I. Bertóti, A. Tóth, M. Mohai, and J. Szépvölgyi: Chemical structure and mechanical properties of Si-containing a-C:H and a-C thin films and their Cr- and W-containing derivatives. Surf. Coat. Technol. 206, 630 (2011).

    Article  Google Scholar 

  3. J.E. Krzanowski and J. Wormwood: Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films: Compositional routes for film densification and hardness enhancement. Surf. Coat. Technol. 201, 2942 (2006).

    Article  CAS  Google Scholar 

  4. P. Eklund, J. Emmerlich, H. Högberg, O. Wilhelmsson, P. Isberg, J. Birch, P.O.Å. Persson, U. Jansson, and L. Hultman: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486 (2005).

    Article  CAS  Google Scholar 

  5. T. Nakamori, T. Tsuruoka, T. Kanamori, and S. Shibata: Effect of film thickness on Ta-Si-C high resistivity thin films for thermal printing heads. Trans. Inst. Electron., Inf. Commun. Eng., Sect. E 70, 1133 (1987).

    Google Scholar 

  6. A. Schüler and P. Oelhafen: Photoelectron spectroscopic characterization of titanium-containing amorphous hydrogenated silicon-carbon films (a-Si1-xCx:H/Ti). Appl. Phys. A 73, 237 (2001).

    Article  Google Scholar 

  7. D. Munteanu, C. Ionescu, C. Olteanu, A. Munteanu, F. Davin, L. Cunha, C. Moura, and F. Vaz: Influence of composition and structural properties in the tribological behaviour of magnetron sputtered Ti-Si-C nanostructured thin films, prepared at low temperature. Wear 268, 552 (2010).

    Article  CAS  Google Scholar 

  8. M. Rester, J. Neidhardt, P. Eklund, J. Emmerlich, H. Ljungcrantz, L. Hultman, and C. Mitterer: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429, 90 (2006).

    Article  Google Scholar 

  9. P. Eklund: Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406 (2007).

    Article  CAS  Google Scholar 

  10. N. Nedfors, O. Tengstrand, A. Flink, P. Eklund, L. Hultman, and U. Jansson: Characterization of amorphous and nanocomposite Nb-Si-C thin films deposited by DC magnetron sputtering. Thin Solid Films 545, 272 (2013).

    Article  CAS  Google Scholar 

  11. W. Gulbinski, T. Suszko, A. Gilewicz, B. Warcholinski, and Z. Kuklinski: Structure and high-temperature tribological behavior of Ti-Si-C nanocomposite thin films. Surf. Coat. Technol. 200, 4179 (2006).

    Article  CAS  Google Scholar 

  12. L. Cunha, F. Vaz, C. Moura, D. Munteanu, C. Lonescu, J.P. Rivière, and E. Le Bourhis: Ti-Si-C thin films produced by magnetron sputtering: Correlation between physical properties, mechanical properties and tribological behavior. J. Nanosci. Nanotechnol. 10, 2926 (2010).

    Article  CAS  Google Scholar 

  13. M. Andersson, S. Urbonaite, E. Lewin, and U. Jansson: Magnetron sputtering of Zr-Si-C thin films. Thin Solid Films 520, 6375 (2012).

    Article  CAS  Google Scholar 

  14. A.R. Phani, J.E. Krzanowski, and J.J. Nainaparampil: Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition. J. Vac. Sci. Technol., A 19, 2252 (2001).

    Article  CAS  Google Scholar 

  15. C. Lopes, N.M.G. Parreira, S. Carvalho, A. Cavaleiro, J.P. Rivière, E. Le Bourhis, and F. Vaz: Magnetron sputtered Ti-Si-C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180 (2007).

    Article  CAS  Google Scholar 

  16. S.H. Koutzaki, J.E. Krzanowski, and J.J. Nainaparampril: Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering. J. Vac. Sci. Technol., A 19, 1912 (2001).

    Article  CAS  Google Scholar 

  17. M. Naka, H. Sakai, M. Maeda, and H. Mori: Formation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng., A 226–228, 774 (1997).

    Article  Google Scholar 

  18. J.L. Endrino and J.E. Krzanowski: Nanostructure and mechanical properties of WC-SiC thin films. J. Mater. Res. 17, 3163 (2002).

    Article  CAS  Google Scholar 

  19. K. Kádas, M. Andersson, E. Holmström, H. Wende, O. Karis, S. Urbonaite, S.M. Butorin, S. Nikitenko, K.O. Kvashnina, U. Jansson, and O. Eriksson: Structural properties of amorphous metal carbides: Theory and experiment. Acta Mater. 60, 4720 (2012).

    Article  Google Scholar 

  20. O. Tengstrand, N. Nedfors, M. Andersson, J. Lu, U. Jansson, A. Flink, P. Eklund, and L. Hultman: Beam-induced crystallization of amorphous Me-Si-C (Me = Nb or Zr) thin films during transmission electron microscopy. MRS Commun. 3(3), 151 (2013).

    Article  CAS  Google Scholar 

  21. F. Banhart: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).

    Article  CAS  Google Scholar 

  22. X. Du, M. Takeguchi, M. Tanaka, and K. Furuya: Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl. Phys. Lett. 82, 1108 (2003).

    Article  CAS  Google Scholar 

  23. R. Kilaas: Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 190, 45 (1998).

    Article  Google Scholar 

  24. H. Fager, J.M. Andersson, J. Lu, M.P.J. Jöesaar, M. Odén, and L. Hultman: Growth of hard amorphous TiAlSiN thin films by cathodic arc evaporation. Surf. Coat. Technol. 235, 376 (2013).

    Article  CAS  Google Scholar 

  25. R.F. Egerton, P. Li, and M. Malac: Radiation damage in TEM and SEM. Micron 35, 399 (2004).

    Article  CAS  Google Scholar 

  26. W.G. Stratton, J. Hamann, J.H. Perepezko, and P.M. Voyles: Electron beam induced crystallization of amorphous Al-based alloys in the TEM. Intermetallics 14, 1061 (2006).

    Article  CAS  Google Scholar 

  27. P.D. Edmondson, W.J. Weber, F. Namavar, and Y. Zhang: Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 422, 86 (2012).

    Article  CAS  Google Scholar 

  28. I.T. Bae, M. Ishimaru, and Y. Hirotsu: Structural changes of SiC under electron-beam irradiation: Temperature dependence. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 315 (2006).

    Article  CAS  Google Scholar 

  29. T. Nagase, T. Sanda, A. Nino, W. Qin, H. Yasuda, H. Mori, Y. Umakoshi, and J.A. Szpunar: MeV electron irradiation induced crystallization in metallic glasses: Atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. J. Non-Cryst. Solids 358, 502 (2012).

    Article  CAS  Google Scholar 

  30. E.G. Fu, J. Carter, M. Martin, G. Xie, X. Zhang, Y.Q. Wang, R. Littleton, and L. Shao: Electron irradiation-induced structural transformation in metallic glasses. Scr. Mater. 61, 40 (2009).

    Article  CAS  Google Scholar 

  31. A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    Article  CAS  Google Scholar 

  32. L.E. Toth: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  33. U. Jansson and E. Lewin: Sputter deposition of transition-metal carbide films–A critical review from a chemical perspective. Thin Solid Films 536, 1 (2013).

    Article  CAS  Google Scholar 

  34. S. Urbonaite, S. Wachtmeister, C. Mirguet, E. Coronel, W.Y. Zou, S. Csillag, and G. Svensson: EELS studies of carbide derived carbons. Carbon 45, 2047 (2007).

    Article  CAS  Google Scholar 

  35. M. Mukherjee: Silicon Carbide–Materials, Processing and Applications in Electronic Devices (InTech, Rijeka, 2011).

    Book  Google Scholar 

  36. H. Okamoto: C-Zr (Carbon-Zirconium). J. Phase Equilib. 17, 162 (1996).

    Article  CAS  Google Scholar 

  37. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

Work was performed within the VINNEX Center FunMat supported by The Swedish Agency for Innovation Systems (VINNOVA). The Knut and Alice Wallenberg Foundation supported the electron microscopy laboratory at Linköping operated by the Thin Film Physics Division. O.T., P.E., and U.J. also acknowledge support from the Swedish Foundation for Strategic Research (SSF) through the Synergy Grant FUNCASE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olof Tengstrand or Per Eklund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tengstrand, O., Nedfors, N., Andersson, M. et al. Model for electron-beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films. Journal of Materials Research 29, 2854–2862 (2014). https://doi.org/10.1557/jmr.2014.345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.345

Navigation