Skip to main content
Log in

Studies on thermoplastic 3D printing of steel–zirconia composites

  • Metal
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) opens new possibilities for functionalization and miniaturization of components in many application fields. Different technologies are known to produce single- or multimaterial components from polymer ceramic or metal. Our new approach — thermoplastic 3D printing — makes it possible to produce metal–ceramic composites. High-filled metal and ceramic suspensions based on thermoplastic binder systems were used as they solidify by cooling. Hence, the portfolio of applicable materials is not limited. Paraffin-based thermoplastic feedstocks with stainless steel powder (17-4PH) and zirconia powder (TZ-3Y-E) were developed with an adapted powder content of 47 vol% steel and 45 vol% zirconia. As compared to other AM technologies, the suspensions were only applied at particular points and areas and not on the whole layer. The printed samples were conventionally debinded and sintered. FESEM studies of the cross-section of the sintered samples showed a homogenous, dense microstructure and a very good connection between the different materials and layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18

Similar content being viewed by others

References

  1. ASTM-Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies, March 1, 2012, ASTM International Distributed under ASTM license by Beuth publisher.

  2. T. Chartier and A. Badev: Rapid prototyping of ceramics. In Handbook of Advanced Ceramics, S. Somiya ed.; Elsevier, Oxford, UK, 2013; pp. 489–524.

    Chapter  Google Scholar 

  3. K. Pham-Gia, W. Rossner, B. Wessler, M. Schäfer, and M. Schwarz: Rapid prototyping of high-density alumina ceramics using stereolithography. cfi/Ber. DKG 83, 36–40 (2006).

    Google Scholar 

  4. T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C.J. Chaput: Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes. J. Am. Ceram. Soc. 91, 2469–2474 (2008).

    CAS  Google Scholar 

  5. M.L. Griffith and J.W. Halloran: Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 2601–2608 (1996).

    Article  CAS  Google Scholar 

  6. A. Licciulli, C. Esposito Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli: Laser stereolithography of ZrO2 toughened Al2O3. J. Eur. Ceram. Soc. 25, 1581–1589 (2005).

    Article  CAS  Google Scholar 

  7. Y. de Hazan, M. Thanert, M. Trunec, and J. Misak: Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J. Eur. Ceram. Soc. 32, 1187–1198 (2012).

    Article  Google Scholar 

  8. R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, and J. Stampfl: Lithography-based additive manufacturing of cellular ceramic structures. Adv. Eng. Mater. 14, 1052–1058 (2012).

    Article  CAS  Google Scholar 

  9. R. Lenk, A. Nagy, H-J. Richter, and A. Techel: Material development for laser sintering of silicon carbide. cfi/Ber. DKG 83, 41–43 (2006).

    Google Scholar 

  10. P. Regenfuss, R. Ebert, and H. Exner: Laser micro sintering — A versatile instrument for the generation of microparts. Laser Tech. J. 4, 26–31 (2007).

    Article  Google Scholar 

  11. Y-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe: Net shaped high performance oxide ceramic parts by selective laser melting. Phys. Procedia 5, 587–594 (2010).

    Article  Google Scholar 

  12. Y. Wu, J. Du, K-L. Choy, and L.L. Hench: Laser densification of alumina powder beds generated using aerosol spray deposition. J. Eur. Ceram. Soc. 27, 4727–4735 (2007).

    Article  CAS  Google Scholar 

  13. R.D. Goodridge, J.C. Lorrison, K.W. Dalgarno, and D.J. Wood: Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics. Glass Technol. 45, 94–96 (2004).

    CAS  Google Scholar 

  14. U. Gbureck, T. Hoelzel, I. Biermann, J. Barralet, and L.M. Grover: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci.: Mater. Med. 19, 1559–1563 (2008).

    CAS  Google Scholar 

  15. H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part B 74B, 782–788 (2005).

    Article  CAS  Google Scholar 

  16. J.Y.S. Yoon, H. Deyhle, U. Gbureck, E. Vorndran, F. Beckmann, and B. Muller: Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping. Int. J. Mater. Res. 103, 200–206 (2012).

    Article  CAS  Google Scholar 

  17. A. Khalyfa, W. Meyer, M. Schnabelrauch, S. Vogt, and H-J. Richter: Manufacturing of biocompatible ceramic bone substitutes by 3D-printing. cfi/Ber. DKG 83, 23–26 (2006).

    Google Scholar 

  18. U. Deisinger, F. Irlinger, R. Pelzer, and G. Ziegler: D-printing of HA-scaffolds for the application as bone substitute material. cfi/Ber. DKG 83, 75–78 (2006).

    Google Scholar 

  19. F. Dombrowski, P.W.G. Caso, M.W. Laschke, M. Klein, J. Guenster, and G. Berger: 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates. Key Eng. Mater. 529–530, 138–142 (2013).

    Google Scholar 

  20. A. Zocca, C.M. Gomes, E. Bernardo, R. Muller, J. Gunster, and P. Colombo: LAS glass–ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33, 1525–1533 (2013).

    Article  CAS  Google Scholar 

  21. R. Melcher, N. Travitzky, C. Zollfrank, and P. Greil: 3D printing of Al2O3/Cu-O interpenetrating phase composite. J. Mater. Sci. 46, 1203–1210 (2011).

    Article  CAS  Google Scholar 

  22. D. Polsakiewicz and W. Kollenberg: Highly loaded alumina inks for use in a piezoelectric print head. Mater. Sci. Eng. Technol. 42, 812–819 (2011).

    CAS  Google Scholar 

  23. J. Günster, S. Engler, and J.G. Heinrich: Forming of complex-shaped ceramic products via layer-wise slurry deposition (LSD). Bull. Eur. Ceram. Soc. 1, 25–28 (2003).

    Google Scholar 

  24. B. Cappi, E. Oezkol, J. Ebert, and R. Telle: Direct inkjet printing of Si3N4: Characterization of ink, green bodies, and microstructure. J. Eur. Ceram. Soc. 28, 2625–2628 (2008).

    Article  CAS  Google Scholar 

  25. J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, and H. Fischer: Direct inkjet printing of dental prostheses made of zirconia. J. Dent. Res. 88, 673–676 (2009).

    Article  CAS  Google Scholar 

  26. M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari: Processing of advanced electroceramic components by fused deposition technique. J. Eur. Ceram. Soc. 21, 1485–1490 (2001).

    Article  CAS  Google Scholar 

  27. S. Bose, J. Darsell, H. Hosick, L. Yang, D.K. Sarkar, and A. Bandyopadhyay: Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 23–28 (2002).

    CAS  Google Scholar 

  28. T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky, and P. Greil: Robocasting of alumina hollow filament lattice structures. J. Eur. Ceram. Soc. 33, 3243–3248 (2013).

    Article  CAS  Google Scholar 

  29. J.N. Stuecker, J. Cesarano, III, and D.A. Hirschfeld: Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J. Mater. Process. Technol. 142, 318–325 (2003).

    Article  CAS  Google Scholar 

  30. K. Cai, B. Roman-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, and P. Miranzo: Geometrically complex silicon carbide structures fabricated by robocasting. J. Am. Ceram. Soc. 95, 2660–2666 (2012).

    Article  CAS  Google Scholar 

  31. D. Polsakiewicz and W. Kollenberg: Process and materials development for functionalized printing in three dimensions (FP-3D). refractories WORLDFORUM 4, 1–8 (2012).

    Google Scholar 

  32. F.A. Cetinel, W. Bauer, M. Mueller, R. Knitter, and J. Hausselt: Influence of dispersant, storage time and temperature on the rheological properties of zirconia-paraffin feedstocks for LPIM. J. Eur. Ceram. Soc. 30, 1391–1400 (2010).

    Article  CAS  Google Scholar 

  33. L. Gorjan, A. Dakskobler, and T. Kosmac: Strength evolution of injection-molded ceramic parts during wick-debinding. J. Am. Ceram. Soc. 95, 188–193 (2012).

    Article  CAS  Google Scholar 

  34. J. Yeo, Y. Jung, and S. Choi: Zirconia-stainless steel functionally graded material by tape casting. J. Eur. Ceram. Soc. 18, 1281–1285 (1998).

    Article  CAS  Google Scholar 

  35. M. Dourandish, A. Simchi, E.T. Shabestary, and T. Hartwig: Pressureless sintering of 3Y-TZP/stainless-steel composite layers. J. Am. Ceram. Soc. 91, 3493–3503 (2008).

    Article  CAS  Google Scholar 

  36. M. Dourandish and M.A. Simchi: Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J. Mater. Sci. 44, 1264–1274 (2009).

    Article  CAS  Google Scholar 

  37. H-J. Bargel and G. Schulze: In Material Science (original title: Werkstoffkunde), 9th ed. (Springer, Berlin, Heidelberg 2005), pp. 232–334.

    Google Scholar 

  38. A. Bergner, T. Moritz, and A. Michaelis: Steel-ceramic laminates made by tape casting–Processing and interfaces. J. Am. Ceram. Soc. (2014, accepted).

Download references

ACKNOWLEDGMENT

The authors would like to thank Mr. Stockmann and Mr. Bedrich for the preparation of the thermoplastic suspensions as well as Mrs. Jungnickel and Mrs. Fischer for the metallographic specimen preparation and the FESEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Scheithauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheithauer, U., Bergner, A., Schwarzer, E. et al. Studies on thermoplastic 3D printing of steel–zirconia composites. Journal of Materials Research 29, 1931–1940 (2014). https://doi.org/10.1557/jmr.2014.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.209

Navigation