Skip to main content
Log in

Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ytterbium monosilicate (Yb2SiO5) is a promising candidate for environmental barrier coating. However, its mechanical and thermal properties are not well understood. In this work, the structural, mechanical, and thermal properties of Yb2SiO5 are studied by combining density functional theory and chemical bond theory calculations. Based on the calculated equilibrium crystal structure, heterogeneous bonding nature and distortion of the structure are revealed. Meanwhile, the full set of elastic constants, polycrystalline mechanical properties, and elastic anisotropy of Yb2SiO5 are presented. In addition, the minimum thermal conductivity of Yb2SiO5 was determined to be 0.74 W m−1 K−1. The theoretical results highlight the potential application of Yb2SiO5 in a thermal and environmental barrier coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. R. Raj: Fundamental research in structural ceramics for service near 2000°C. J. Am. Ceram. Soc. 76, 2147 (1993).

    CAS  Google Scholar 

  2. J.L. Smialek, R.C. Robinson, E.J. Opila, D.S. Fox, and N.S. Jacobson: SiC and Si3N4 scale volatility under combustor conditions. Adv. Compos. Mater. 8, 33 (1999).

    CAS  Google Scholar 

  3. H. Klemm, C. Taut, and G. Wötting: Long-term stability of nonoxide ceramics in an oxidative environment at 1500°C. J. Eur. Ceram. Soc. 23, 619 (2003).

    CAS  Google Scholar 

  4. K.N. Lee: Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133–134, 1 (2000).

    Google Scholar 

  5. A.F. Dericioglu, S. Zhu, Y. Kagawa, and H. Kasano: Damage behavior of air-plasma-sprayed thermal barrier coatings under foreign object impact. Adv. Eng. Mater. 5, 735 (2003).

    CAS  Google Scholar 

  6. K.N. Lee, J.I. Eldridge, and R.C. Robinson: Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics. J. Am. Ceram. Soc. 88, 3483 (2005).

    CAS  Google Scholar 

  7. K.N. Lee, D.S. Fox, and N.P. Bansal: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25(10), 1705–1715 (2005).

    CAS  Google Scholar 

  8. H.F. Chen, Y.F. Gao, Y. Liu, and H.J. Luo: Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg. Chem. 49, 1942 (2010).

    CAS  Google Scholar 

  9. J. Felsche: The Crystal Chemistry of the Rare-Earth Silicates (Springer, Heidelberg, Berlin, 1973).

    Google Scholar 

  10. H. Klemm: Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 93, 1501 (2010).

    CAS  Google Scholar 

  11. H.M. Wen, S.M. Dong, P. He, Z. Wang, H.J. Zhou, and X.Y. Zhang: Sol–gel synthesis and characterization of ytterbium silicate powders. J. Am. Ceram. Soc. 90, 4043 (2007).

    CAS  Google Scholar 

  12. Z.S. Khan, B. Zou, W. Huang, X. Fan, L. Gu, X. Chen, S. Zeng, C. Wang, and X. Cao: Synthesis and characterization of Yb and Er based monosilicate powders and durability of plasma sprayed Yb2SiO5 coatings on C/C–SiC composites. Mater. Sci. Eng., B 177, 184 (2012).

    CAS  Google Scholar 

  13. D.R. Clarke: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67 (2003).

    Google Scholar 

  14. B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).

    CAS  Google Scholar 

  15. G.A. Slack: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).

    CAS  Google Scholar 

  16. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  17. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    CAS  Google Scholar 

  18. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  19. J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan: Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 59, 1742 (2011).

    CAS  Google Scholar 

  20. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  21. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).

    CAS  Google Scholar 

  22. V. Milman and M.C. Warren: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 (2001).

    CAS  Google Scholar 

  23. W. Voigt: Lehrbuch der Kristallphysik (Taubner, Leipzig, 1928).

    Google Scholar 

  24. A. Reuss: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle. Z. Angew, Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  25. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).

    Google Scholar 

  26. D.J. Green: An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  27. H.M. Xiang, F.Z. Hai, and Y.C. Zhou: Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7. J. Eur. Ceram. Soc. 34, 1809 (2014).

    CAS  Google Scholar 

  28. H.M. Xiang, F.Z. Hai, and Y.C. Zhou: Theoretical investigations on the structural, electronic, mechanical and thermal properties of MP2O7 (M = Ti, Hf). J. Am. Ceram. Soc. DOI: https://doi.org/10.1111/jace.12961 (2014).

  29. L.C. Sun, B. Liu, J.M. Wang, J.Y. Wang, Y.C. Zhou, and Z.J. Hu: Y4Si2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95, 3278 (2012).

    CAS  Google Scholar 

  30. Y.C. Zhou and B. Liu: Theoretical investigation of mechanical and thermal properties of MPO4 (M = Al, Ga). J. Eur. Ceram. Soc. 33, 2817 (2013).

    CAS  Google Scholar 

  31. O.L. Anderson: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).

    CAS  Google Scholar 

  32. B.D. Sanditov, S.B. Tsydypov, and D.S. Sanditov: Relation between the grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53, 594 (2007).

    CAS  Google Scholar 

  33. G.V. Anan’eva, A.M. Korovkin, T.I. Merkulyaeva, A.M. Morozova, M.V. Petrov, I.R. Savinova, V.R. Startsev, and P.P. Feofilov: Growth of lanthanide oxyorthosilicate single crystals, and their structural and optical characteristics. Inorg. Mater. 17, 1037 (1981).

    Google Scholar 

  34. D. Sanchez-Portal, E. Artacho, and J.M. Soler: Projection of plane-wave calculations into atomic orbitals. Solid State Commun. 95, 685 (1995).

    CAS  Google Scholar 

  35. M.D. Segall, R. Shah, C.J. Pickard, and M.C. Payne: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).

    CAS  Google Scholar 

  36. Y.C. Zhou, C. Zhao, F. Wang, Y.J. Sun, L.Y. Zheng, and X.H. Wang: Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7. J. Am. Ceram. Soc. 96, 3891 (2013).

    CAS  Google Scholar 

  37. J.J. Carvajal, J.L. García-Muñoz, R. Solé, J. Gavaldà, J. Massons, X. Solans, F. Díaz, and M. Aguiló: Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4. Chem. Mater. 15, 2338 (2003).

    CAS  Google Scholar 

  38. L. Pauling: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010 (1929).

    CAS  Google Scholar 

  39. M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).

    Google Scholar 

  40. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).

    Google Scholar 

  41. W.R.L. Lambrecht, B. Segall, M. Methfessel, and M.V. Schilfgaarde: Calculated elastic constants and deformation potentials of cubic SiC. Phys. Rev. B 44, 3685 (1991).

    CAS  Google Scholar 

  42. Z.G. Wu, X.J. Chen, V.V. Struzhkin, and R.E. Cohen: Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 71, 214103 (2005).

    Google Scholar 

  43. J.Y. Wang and Y.C. Zhou: Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39, 415 (2009).

    CAS  Google Scholar 

  44. X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).

    CAS  Google Scholar 

  45. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Science Publications, Oxford, 1985).

    Google Scholar 

  46. H. Mohapatra and C.J. Eckhardt: Elastic constants and related mechanical properties of the monoclinic polymorph of the carbamazepine molecular crystal. J. Phys. Chem. B 112, 2293 (2008).

    CAS  Google Scholar 

  47. M.A. Blanco, E. Francisco, and V. Luaña: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004).

    CAS  Google Scholar 

  48. R. Car and M. Parrinello: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985).

    CAS  Google Scholar 

  49. S. Zhang, H. Li, S. Zhou, and T. Pan: Estimation thermal expansion coefficient from lattice energy for inorganic crystals. Jpn. J. Appl. Phys. 45, 8801 (2006).

    CAS  Google Scholar 

  50. N.S. Jacobson, D.S. Fox, J.L. Smialek, E.J. Opila, C. Dellacorte, and K.N. Lee: ASM Handbook, S.D. Cramer and B.S. Covino, Jr. ed.; ASM International: Materials Park, Ohio, Vol. 13B, 2005.

    Google Scholar 

  51. Z.Q. Sun, Y.C. Zhou, J.Y. Wang, and M.S. Li: γ-Y2Si2O7, a machinable silicate ceramic: Mechanical properties and machinability. J. Am. Ceram. Soc. 90, 2535 (2007).

    CAS  Google Scholar 

  52. Y.X. Luo, J.M. Wang, J.Y. Wang, J.N. Li, and Z.J. Hu: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97, 945 (2014).

    CAS  Google Scholar 

  53. J.C. Phillips and J.A. Van Vechten: Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705 (1969).

    CAS  Google Scholar 

  54. J.A. Van Vechten: Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891 (1969).

    Google Scholar 

  55. B.F. Levine: Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463 (1973).

    CAS  Google Scholar 

  56. D. Xue and S. Zhang: Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. J. Phys.: Condens. Matter 8, 1949 (1996).

    CAS  Google Scholar 

  57. D. Liu, S. Zhang, and Z. Wu: Lattice energy estimation for inorganic ionic crystals. Inorg. Chem. 42, 2465 (2003).

    CAS  Google Scholar 

  58. S. Zhang, H. Li, H. Li, S. Zhou, and X. Cao: Calculation of the bulk modulus of simple and complex crystals with the chemical bond method. J. Phys. Chem. B 111, 1304 (2007).

    CAS  Google Scholar 

  59. S. Zhang, H. Li, L. Li, and S. Zhou: Calculation of bulk modulus on carbon nitrides with chemical bond method. Appl. Phys. Lett. 91, 251905 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Bin Liu from Oak Ridge National Laboratory, USA, for the English revision. This work was supported by the National Outstanding Young Scientist Foundation for Y.C. Zhou under Grant No. 59925208 and the Natural Sciences Foundation of China under Grant No. 50832008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Zhou.

APPENDIX: Chemical Bond Theory

APPENDIX: Chemical Bond Theory

Chemical bond theory, developed by Phillips and Van Vechten,53 Van Vechten,54 Levine,55 and Xue and Zhang,56 provides an efficient method to study the properties of the chemical bonds in complex crystals and to predict the physical properties of a crystal from a bonding standpoint. The implementation of the theory relies on the decomposition of complex crystal into a linear combination of subformula of various binary crystals.56

According to the chemical bond theory, for a giving chemical formula of a complex crystal, it is always possible to decompose it into the following simple subformula:56

$$A_{a1}^1A_{a2}^2 \cdots A_{ai}^iB_{b1}^1B_{b2}^2 \cdots B_{bj}^{\,j} = \sum\limits_{i,j} {A_{mi}^iB_{nj}^{\,j}} = \sum\limits_\mu {{{\left( {{A_m}{B_n}} \right)}^\mu }} \quad ,$$
(A1)
$$mi = {{N\left( {{B^{\,j}} - {A^i}} \right) \times ai} \over {{N_{\rm{C}}}\left( {{A^i}} \right)}}, nj = {{N\left( {{A^i} - {B^{\,j}}} \right) \times bj} \over {{N_{\rm{C}}}\left( {{B^{\,j}}} \right)}}\quad ,$$
(A2)

where NC(Ai) and NC(Bj) are the coordination numbers of Ai and Bj ions in the crystal. N(BjAi) is the nearest coordination fraction contributed by Ai ion and vice versa. (AmBn)μ is one of subformulas. Since the fictitious binary crystal contains only one species of chemical bond, its properties can be easily estimated.

For a fictitious binary crystal (AmBn)μ, the total lattice energy Uμ can be separated into the ionic part Uiμ and the covalent part Ucμ, which can, respectively, be expressed as:57

$$U_{\rm{i}}^\mu = {{1270\left( {m + n} \right){Z^ + }{Z^ - }} \over {{l^\mu }}}\left( {1 - {{0.4} \over {{l^\mu }}}} \right)f_{\rm{i}}^\mu \left( {{\rm{kJ}} {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)\quad ,$$
(A3)
$$U_{\rm{c}}^\mu = 2100m{{{{\left( {{Z^ + }} \right)}^{1.64}}} \over {{{\left( {{l^\mu }} \right)}^{0.75}}}}f_{\rm{c}}^\mu \left( {{\rm{kJ}} {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)\quad ,$$
(A4)

where Z+ and Z are the valence of cation and anion in the binary crystal and lμ is the length of μ type bond. fiμ and fcμ are the ionicity and covalency of A–B bond, and are defined as:55

$$f_{\rm{i}}^\mu = {{{{\left( {{C^\mu }} \right)}^2}} \over {{{\left( {E_{\rm{g}}^\mu } \right)}^2}}},f_{\rm{c}}^\mu = {{{{\left( {E_{\rm{h}}^\mu } \right)}^2}} \over {{{\left( {E_{\rm{g}}^\mu } \right)}^2}}}\quad ,$$
(A5)
$$f_{\rm{i}}^\mu + f_{\rm{c}}^\mu = 1\quad ,$$
(A6)

where Egμ is the average energy bond gap and is composed of homopolar Ehμ and heteropolar Cμ parts. These two parts of energy can be estimated by:55

$$E_{\rm{h}}^\mu = {{39.74} \over {{{\left( {{l^\mu }} \right)}^{2.48}}}} ({\rm{eV}})\quad ,$$
(A7)
$$\eqalign{& {C^\mu } = 14.4{b^\mu } {\rm{exp}}\left( { - k_{\rm{s}}^\mu {r^\mu }} \right)\left( {{{{{\left( {Z_{\rm{A}}^\mu } \right)}^*}} \over {{r^\mu }}} - \left( {n/m} \right){{{{\left( {Z_{\rm{B}}^\mu } \right)}^*}} \over {{r^\mu }}}} \right) \cr & \quad \quad ({\rm{eV}})({\rm{if}} n m)\quad , \cr} $$
(A8a)
$$\eqalign{& {C^\mu } = 14.4{b^\mu } {\rm{exp}}\left( { - k_{\rm{s}}^\mu {r^\mu }} \right)\left( {\left( {m/n} \right){{{{\left( {Z_{\rm{A}}^\mu } \right)}^*}} \over {{r^\mu }}} - {{{{\left( {Z_{\rm{B}}^\mu } \right)}^*}} \over {{r^\mu }}}} \right) \cr & \quad \quad ({\rm{eV}}) ({\rm{if }}m n)\quad , \cr} $$
(A8b)

where bμ is a structural correction factor, rμ = lμ/2 is the average ion radius expressed in angstroms, exp(−ksμrμ) is the Thomas–Fermi screening factor, and (ZAμ)* and (ZBμ)* are the effective valence electron numbers of A and B ions, respectively.

The lattice energy density uμ of a binary crystal, which is an important parameter in estimating the bulk modulus and linear TEC of a binary crystal, is defined as:58

$${u^\mu } = {{{U^\mu }} \over {{N_{{\rm{Av}}}}{n^\mu }v_{\rm{b}}^\mu }}\quad ,$$
(A9)

where NAv is the Avogadro constant, nμ is the number of the chemical bond in one formula unit, and vbμ is the volume of μ type chemical bond. Then, the bulk modulus Bμ of a certain type of binary crystals can be calculated on the basis of lattice energy density:58

$${B^\mu } = {\delta ^\mu } + {{{u^\mu }} \over {{\beta ^\mu }}}\quad ,$$
(A10)

where δμ is a constant and βμ is a proportion factor depending on the average valence and average coordination number of subformula AmBn. The bulk modulus of the complex crystals is expressed as:59

$${B_{\rm{m}}} = {1 \over {{k_{\rm{m}}}}}\quad ,$$
(A11)
$${k_{\rm{m}}} = {{\Delta V} \over {{V_{\rm{m}}}\Delta P}} = {1 \over {{V_{\rm{m}}}}}\sum\limits_\mu {{{\Delta {V_\mu }} \over {\Delta {P_\mu }}}} = {1 \over {{V_{\rm{m}}}}}\sum\limits_\mu {{V^\mu }{k^\mu }} = {1 \over {{V_{\rm{m}}}}}\sum\limits_\mu {{{{V^\mu }} \over {{B^\mu }}}} \quad ,$$
(A12)

where Bμ is the bulk modulus of μ type chemical bond, and Vμ is the volume of μ type bond in one molecule.

The linear TEC of a complex crystal is closely related to the lattice energy and can be estimated by the following equations:49

$$\alpha = \sum\limits_\mu {{F^\mu }{\alpha ^\mu }} \quad ,$$
(A13)
$${\alpha ^\mu } = - 31685 + 08376{\chi ^\mu }\quad ,$$
(A14)
$${\chi ^\mu } = {{{k_{\rm{B}}}Z_{\rm{A}}^\mu N_{{\rm{CA}}}^\mu } \over {{U^\mu }{\Delta ^\mu }}}{\beta ^\mu }, {\beta ^\mu } = {{m\left( {m + n} \right)} \over {2n}}\quad ,$$
(A15)

where parameter Δμ is a correction parameter from the analysis of experimental results, which depends on the position of cation in the periodic table. Fμ is the fraction of μ type bond in the complex crystal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Feng, Z. & Zhou, Y. Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations. Journal of Materials Research 29, 1609–1619 (2014). https://doi.org/10.1557/jmr.2014.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.201

Navigation