Skip to main content
Log in

Tensile properties of laser additive manufactured Inconel 718 using filler wire

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A 5 kW continuous wave fiber laser welding system was used to deposit INCONEL® alloy 718 (IN718) on service-exposed IN718 parent metal (PM) substrates using filler wire addition. The microstructure of the deposits was characterized in the fully heat treated condition. The service-exposed IN718 PM and the direct laser deposited (DLD) specimens were then evaluated through room temperature tensile testing. The yield and tensile strengths were well above the minimum values, as defined in the aerospace specifications AMS 5596K and 5663M. However, the ductility at room temperature of the DLD and DLD-PM samples was slightly lower than that specified in AMS 5596K and 5663M. The tensile fracture surfaces of the service-exposed IN718 PM, DLD, and DLD-PM specimens were analyzed using scanning electron microscopy (SEM), and the tensile failure mechanisms are discussed in detail, particularly for the important roles of the secondary particles (MC carbides) and intermetallics (platelet Ni3Nb-δ and Laves phases).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. H. Qi, M. Azer, and A. Ritter: Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Metall. Mater. Trans. A 40A, 2010 (2009).

    Google Scholar 

  2. G.K.L. Ng, G.J. Bi, and H.Y. Zheng: An investigation on porosity in laser metal deposition. The International Congress on Applications of Lasers & Electro-Optics (ICALEO) 2008 Proceedings, Paper #105, Temecula, California, October 2008; p. 23.

  3. J.N. Dupont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-base Alloys (John Wiley & Sons, Inc., Hoboken, NJ, 2009).

    Book  Google Scholar 

  4. J. Andersson and G.P. Sjoberg: Repair welding of wrought superalloys: Alloy 718, Allvac 718plus and Waspaloy. Sci. Technol. Weld. Joining 17, 49 (2012).

    Article  CAS  Google Scholar 

  5. B. Baufeld: Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J. Mater. Eng. Perform. 21, 1416 (2011).

    Article  Google Scholar 

  6. N.I.S. Nussein, J. Segal, D.G. McCartney, and I.R. Pashby: Microstructure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire. Mater. Sci. Eng., A 497, 260 (2008).

    Article  Google Scholar 

  7. J.C. Ion: Laser Processing of Engineering Materials; Principles, Procedure and Industrial Application (Elsevier Butterworth-Heinemann, Oxford, UK, 2005).

    Google Scholar 

  8. X. Zhao, J. Chen, X. Lin, and W. Huang: Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng., A 478, 119 (2008).

    Article  Google Scholar 

  9. P.L. Blackwell: The mechanical and microstructural characteristics of laser-deposited IN718. J. Mater. Process. Technol. 170, 240 (2005).

    Article  CAS  Google Scholar 

  10. G.D.J. Ram, A.V. Reddy, K.P. Rao, G.M. Reddy, and J.K.S. Sundar: Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J. Mater. Process. Technol. 167, 73 (2005).

    Article  CAS  Google Scholar 

  11. X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, and A. Birur: Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser. J. Mater. Sci. 44, 4557 (2009).

    Article  CAS  Google Scholar 

  12. J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim, and C.Y. Kang: Microstructures and mechanical properties of IN718 welds by CO2 laser welding. J. Mater. Process. Technol. 201, 515 (2008).

    Article  CAS  Google Scholar 

  13. G.X. Yang, Y.F. Xu, L. Jiang, and S.H. Liang: High temperature tensile properties and fracture behavior of cast nickel-base K445 superalloy. Prog. Nat. Sci. 21, 418–425 (2011).

    Article  Google Scholar 

  14. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide (ASM international, The Materials Information Society, Materials Park, OH, 2002).

    Book  Google Scholar 

  15. E.A. Loria: Proceedings of the International Symposium on the Metallurgy and Applications of Superalloy 718, Pittsburgh, PA, TMS, Warrendale, PA, 2005, p. 135.

    Google Scholar 

  16. G.A. Rao, M. Kumar, M. Srinivas, and D.S. Sarma: Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Mater. Sci. Eng., A 335, 114 (2003).

    Article  Google Scholar 

  17. S. Biswas, G.M. Reddy, T. Mohandas, and C.V.S. Murthy: Residual stresses in Inconel 718 electron beam welds. J. Mater. Sci. 39, 6813 (2004).

    Article  CAS  Google Scholar 

  18. H.C. Chen, A. Pinkerton, and L. Li: Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int. J. Adv. Manuf. Technol. 52, 977 (2011).

    Article  Google Scholar 

  19. Y.N. Zhang, X. Cao, P. Wanjara, and M. Medraj: Oxide films in laser additive manufactured Inconel 718. Acta Mater. 61, 6562 (2013).

    Article  CAS  Google Scholar 

  20. Y.N. Zhang, X. Cao, and P. Wanjara: Fiber laser deposition of Inconel 718 using filler wire. Int. J. Adv. Manuf. Technol. 69, 2569 (2013).

    Article  Google Scholar 

  21. J.W. Hooijmans, J.C. Lippold, and W. Lin: Effect of multiple postweld heat treatment on the weldability of alloy 718. Superalloys 718, 625, 706 and Various Derivatives, edited by E.A. Loria. TMS, Warrendale, PA, 1997.

    Google Scholar 

  22. G.D.J. Ram, A.V. Reddy, K.P. Rao, and G.M. Reddy: Microstructure and mechanical properties of Inconel 718 electron beam welds. Mater. Sci. Technol. 21, 1132 (2005).

    Article  CAS  Google Scholar 

  23. J.F. Radavich: The physical metallurgy of cast and wrought alloy 718. Conference Proceedings on Superalloy 718–Metallurgy and Applications, edited by E.A. Loria. TMS, Warrendale, PA, 1989; p. 229.

    Google Scholar 

  24. F.J. Xu, Y.H. Lv, Y.X. Liu, F.Y. Shu, P. He, and B.S. Xu: Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. Mater. Sci. Technol. 29, 480 (2013).

    Article  CAS  Google Scholar 

  25. Y.N. Zhang, X. Cao, P. Wanjara, and M. Medraj: Fatigue properties of laser additive manufactured Inconel 718 using powder feed. (2014, in preparation).

  26. X. Cao and J. Campbell: The nucleation of Fe-rich phases on oxide films in Al-11.5Si-0.4Mg cast alloys. Metall. Mater. Trans. A 34A, 1409 (2003).

    Article  CAS  Google Scholar 

  27. X. Cao and J. Campbell: Solidification characteristics of Fe-rich phases in cast Al-11.5Si-0.4Mg alloy. Metall. Mater. Trans. A 35, 1425 (2004).

    Article  Google Scholar 

  28. K. Liu, X. Cao, and X-G. Chen: Formation and phase selection of iron-rich intermetallics in Al-4.6Cu-0.3Mg-0.5Fe cast alloys. Metall. Mater. Trans. A 44, 682 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to X. Pelletier and E. Poirier for the preparation of the laser deposited IN718 coupons and their technical support for metallographic preparation. The following statement pertains only to authors X. Cao, Y.-N. Zhang and P. Wanjara: Published with permission of the Crown in Right of Canada, i.e., the Government of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YN., Cao, X., Wanjara, P. et al. Tensile properties of laser additive manufactured Inconel 718 using filler wire. Journal of Materials Research 29, 2006–2020 (2014). https://doi.org/10.1557/jmr.2014.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.199

Navigation