Skip to main content

Advertisement

Log in

Hidden energy dissipation mechanism in nacre

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The defense mechanism that nacre (mother-of-pearl) uses to protect its living organism against high-speed predatory attack can provide lessons for engineered armor design. However, the underlying physics responsible for nacre’s dynamic energy dissipation has hitherto remained a mystery to be uncovered. Here we demonstrate a new energy dissipation mechanism hidden in nacre and activated only upon dynamic loading, where the crack terminates its propagation along nacre’s biopolymer interlayers but straightly impinges the aragonite platelets (95 vol%) in a transgranular manner. This intergranular-transgranular transition promotes the fracture energy dissipation, far exceeding that of the currently-used engineered ceramics. The mechanistic origin accounting for the enhancement of fracture energy dissipation is attributed to the unique nanoparticle architectured aragonite platelets. The dynamic manifestation in nacre can inspire a new route to design stronger-and-tougher engineered ceramic armors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. G. Hu, K.T. Ramesh, B. Cao, and J.W. McCauley: The compressive failure of aluminum nitride considered as a model advanced ceramic. J. Mech. Phys. Solids 59(5), 1076 (2011).

    Article  CAS  Google Scholar 

  2. G. Hu, C.Q. Chen, K.T. Ramesh, and J.W. McCauley: Mechanisms of dynamic deformation and dynamic failure in aluminum nitride. Acta Mater. 60(8), 3480 (2012).

    Article  CAS  Google Scholar 

  3. M.W. Chen, J.W. McCauley, D.P. Dandekar, and N.K. Bourne: Dynamic plasticity and failure of high-purity alumina under shock loading. Nat. Mater. 5(8), 614 (2006).

    Article  CAS  Google Scholar 

  4. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, and H.D. Espinosa: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55(2), 306 (2007).

    Article  CAS  Google Scholar 

  5. M.F. Ashby and S.D. Hallam: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. Mater. 34(3), 497 (1986).

    Article  CAS  Google Scholar 

  6. J.W. Hutchinson and Z. Suo: Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992).

    Article  Google Scholar 

  7. M.Y. He and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic-materials. Int. J. Solids Struct. 25(9), 1053 (1989).

    Article  Google Scholar 

  8. J. Dundurs and D.B. Bogy: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36(3), 650 (1969).

    Article  Google Scholar 

  9. Z. Huang and X. Li: Nanoscale structural and mechanical characterization of heat treated nacre. Mater. Sci. Eng., C 29(6), 1803 (2009).

    Article  CAS  Google Scholar 

  10. Z-H. Xu, Y. Yang, Z. Huang, and X. Li: Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Mater. Sci. Eng., C 31(8), 1852 (2011).

    Article  CAS  Google Scholar 

  11. V. Prakash and N. Mehta: Uniaxial compression and combined compression-and-shear response of amorphous polycarbonate at high loading rates. Polym. Eng. Sci. 52(6), 1217 (2012).

    Article  CAS  Google Scholar 

  12. X. Li and Z. Huang: Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre. Phys. Rev. Lett. 102(7), 075502 (2009).

    Article  Google Scholar 

  13. Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684), 654 (2004).

    Article  CAS  Google Scholar 

  14. X.Q. Yan, Z. Tang, L. Zhang, J.J. Guo, C.Q. Jin, Y. Zhang, T. Goto, J.W. McCauley, and M.W. Chen: Depressurization amorphization of single-crystal boron carbide. Phys. Rev. Lett. 102(7), 075505 (2009).

    Article  CAS  Google Scholar 

  15. D. Ge, V. Domnich, T. Juliano, E.A. Stach, and Y. Gogotsi: Structural damage in boron carbide under contact loading. Acta Mater. 52(13), 3921 (2004).

    Article  CAS  Google Scholar 

  16. Q. Wei: Strain rate effects in the ultrafine grain and nanocrystalline regimes—its influence on some constitutive behavior. J. Mater. Sci. 42, 1709 (2007).

    Article  CAS  Google Scholar 

  17. Z. Huang, H. Li, Z. Pan, Q. Wei, Y.J. Chao, and X. Li: Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1(148), 148 (2011).

    Article  CAS  Google Scholar 

  18. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1(1), 45 (2002).

    Article  CAS  Google Scholar 

  19. J.D. Currey: Mechanical-properties of mother of pearl in tension. Proc. R. Soc. London Ser. B 196(1125), 443 (1977).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the help from D. Wilhelm for compression test. We also appreciate the help with SEM and TEM observation from Y.C. Yang and D. Blom, respectively. This work was supported by the U.S. Army research office under agreement/Grant No. W911 NF-07-1-0449. Q.M. Wei was grateful for the financial support of U.S. Army Research Office under Grant No. W911NF-07-1-0335.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuming Wei or Xiaodong Li.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.179.

Supporting Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Pan, Z., Li, H. et al. Hidden energy dissipation mechanism in nacre. Journal of Materials Research 29, 1573–1578 (2014). https://doi.org/10.1557/jmr.2014.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.179

Navigation