Skip to main content
Log in

Microdrop generation and deposition of ionic liquids

  • Ceramic
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work describes the use of a piezo-actuated inkjet print head with a nozzle aperture of 50 µm to obtain picoliter drops of different model ionic liquids (ILs). A theoretical analysis of the microdrop generation of three model ILs is confirmed by experiments. The inkjet print process was optimized to enable a stable and reproducible drop ejection in both continuous and drop-on-demand modes by controlling the temperature of the nozzle, as well as the electrical signal sent to the piezo actuator used to generate the drops. Controlled volumes ranging from 43 ± 3 pL to 319 ± 1 pL have been achieved, with a volume control down to 3 pL. The null volatility of ILs yields an extremely high stability of the inkjet process, obtaining drops with very constant volumes during the entire print process. It also avoids the coffee staining effect observed in the deposition of conventional liquid drops. The possibility to deposit controlled volumes in a reproducible way is demonstrated here and applied to a proof-of-concept application with the aim to create dense concave optical lens arrays by replicating the deposited ionic liquid microdrops in poly(dimethylsiloxane) (PDMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. N.V. Plechkova and K.R. Seddon: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123 (2008).

    Article  CAS  Google Scholar 

  2. R.D. Rogers and K.R. Seddon: Ionic liquids–Solvents of the future?Science 302(5646), 792 (2003).

    Article  Google Scholar 

  3. H. Weingärtner: Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chem., Int. Ed. 47(4), 654 (2008).

    Article  Google Scholar 

  4. K.R. Seddon: Ionic liquids for clean technologyJ. Chem. Technol. Biotechnol. 68(4), 351 (1997).

    Article  CAS  Google Scholar 

  5. P. Wasserscheid and W. Keim: Ionic liquids–New ‘solutions’ for transition metal catalysis. Angew. Chem., Int. Ed. 39(21), 3773 (2000).

    Article  Google Scholar 

  6. T. Torimoto, T. Tsuda, K.I. Okazaki, and S. Kuwabata: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196 (2010).

    Article  CAS  Google Scholar 

  7. E.F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K.R. Seddon, and S.P. Worden: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447(7147), 979 (2007).

    Article  CAS  Google Scholar 

  8. M. Grätzel: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4(2), 145 (2003).

    Article  Google Scholar 

  9. T.T. Trang Pham, T. Bessho, N. Mathews, S.M. Zakeeruddin, Y.M. Lam, S. Mhaisalkar, and M. Grätzel: Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells. J. Mater. Chem. 22(32), 16201 (2012).

    Article  Google Scholar 

  10. F.J.M. Rutten, H. Tadesse, and P. Licence: Rewritable imaging on the surface of frozen ionic liquids. Angew. Chem., Int. Ed. 46(22), 4163 (2007).

    Article  CAS  Google Scholar 

  11. M.D. Bermúdez, A.E. Jiménez, J. Sanes, and F.J. Carrión: Ionic liquids as advanced lubricant fluids. Molecules 14(8), 2888 (2009).

    Article  Google Scholar 

  12. G.T. Kim, S.S. Jeong, M.Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, and G.B. Appetecchi: Development of ionic liquid-based lithium battery prototypes. J. Power Sources 199, 239 (2012).

    Article  CAS  Google Scholar 

  13. N. Liu, X. Chen, and Z. Ma: Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens. Bioelectron. 48, 33 (2013).

    Article  CAS  Google Scholar 

  14. D. Tordera, S. Meier, M. Lenes, R.D. Costa, E. Ortí, W. Sarfert, and H.J. Bolink: Simple, fast, bright, and stable light sources. Adv. Mater. 24(7), 897 (2012).

    Article  CAS  Google Scholar 

  15. S. Tsuchitani, N. Takagi, K. Kikuchi, and H. Miki: Chemical propulsion using ionic liquids. Langmuir 29(9), 2799 (2013).

    Article  CAS  Google Scholar 

  16. A. Hozumi, P. Bien, and T.J. McCarthy: Ionic liquids: Nondestructive, nonvolatile imaging fluids for submicrometer-scale monolayer patterns. J. Am. Chem. Soc. 132(16), 5602 (2010).

    Article  CAS  Google Scholar 

  17. P. Dubois, G. Marchand, Y. Fouillet, J. Berthier, T. Douki, F. Hassine, S. Gmouh, and M. Vaultier: Ionic liquid droplet as e-microreactor. Anal. Chem. 78(14), 4909 (2006).

    Article  CAS  Google Scholar 

  18. J. Perera-Núñez, A. Méndez-Vilas, L. Labajos-Broncano, and M.L. González-Martín: Ionic liquid microdroplets as versatile lithographic molds for sculpting curved topographies on soft materials surfaces. Langmuir 26(22), 17712 (2010).

    Article  Google Scholar 

  19. L. Gao and T.J. McCarthy: Ionic liquids are useful contact angle probe fluids. J. Am. Chem. Soc. 129(13), 3804 (2007).

    Article  CAS  Google Scholar 

  20. M. Palacio and B. Bhushan: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20(6), 1194 (2008).

    Article  CAS  Google Scholar 

  21. J. Pu, S. Wan, W. Zhao, Y. Mo, X. Zhang, L. Wang, and Q. Xue: Preparation and tribological study of functionalized graphene-IL nanocomposite ultrathin lubrication films on Si substrates. J. Phys. Chem. C 115(27), 13275 (2011).

    Article  CAS  Google Scholar 

  22. A. Inaba, G. Yoo, Y. Takei, K. Matsumoto, and I. Shimoyama: A Graphene FET Gas Sensor Gated by Ionic Liquid: Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (Taipei, Taiwan, 2013); p. 969.

  23. X. Mu, Z. Wang, M. Guo, X. Zeng, and A.J. Mason: Fabrication of a Miniaturized Room Temperature Ionic Liquid Gas Sensor for Human Health and Safety Monitoring: Proceedings of the IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment (Hsinchu, Taiwan, 2012); p. 140.

  24. X. Mu, Z. Wang, X. Zeng, and A.J. Mason: A robust flexible electrochemical gas sensor using room temperature ionic liquid. IEEE Sens. J. 13(10), 3976 (2013).

    Article  CAS  Google Scholar 

  25. K. Ohsawa, H. Takahashi, K. Noda, T. Kan, K. Matsumoto, and I. Shimoyama: A Gas Sensor Based on Viscosity Change of Ionic Liquid: Proceedings of the 24th IEEE International Conference on Micro Electro Mechanical Systems (Cancun, Mexico, 2011); p. 525.

  26. K. Kaisei, K. Kobayashi, K. Matsushige, and H. Yamada: Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip. Ultramicroscopy 110(6), 733 (2010).

    Article  CAS  Google Scholar 

  27. J.T. Delaney, Jr., A.R. Liberski, J. Perelaer, and U.S. Schubert: A practical approach to the development of inkjet printable functional ionogels–bendable, foldable, transparent, and conductive electrode materials. Macromol. Rapid Commun. 31(22), 1970 (2010).

    Article  Google Scholar 

  28. U. Löffelmann, N. Wang, D. Mager, P.J. Smith, and J.G. Korvink: Solvent-free inkjet printing process for the fabrication of conductive, transparent, and flexible ionic liquid-polymer gel structures. J. Polym. Sci., Part B: Polym. Phys. 50(1), 38 (2012).

    Article  Google Scholar 

  29. V.J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger: Microlenses with defined contour shapes. Opt. Express 19(19), 18665 (2011).

    Article  CAS  Google Scholar 

  30. V.J. Cadarso, G. Smolik, V. Auzelyte, L. Jacot-Descombes, and J. Brugger: Heterogeneous material micro-transfer by ink-jet print assisted mould filling. Microelectron. Eng. 98, 619 (2012).

    Article  CAS  Google Scholar 

  31. B.J. De Gans, P.C. Duineveld, and U.S. Schubert: Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16(3), 203 (2004).

    Article  Google Scholar 

  32. H. Wijshoff: The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491(4–5), 77 (2010).

    Article  CAS  Google Scholar 

  33. G.O. Thomas: The aerodynamic breakup of ligaments. Atomization Sprays 13(1), 117 (2003).

    Article  Google Scholar 

  34. Y.F. Liu, M.H. Tsai, Y.F. Pai, and W.S. Hwang: Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl. Phys. A: Mater. Sci. Process. 111(2), 509 (2013).

    Article  CAS  Google Scholar 

  35. B. Derby: Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 31(14), 2543 (2011).

    Article  CAS  Google Scholar 

  36. J.E. Fromm: Numerical calculation of the fluid dynamics of drop-on-demand jets IBM. J. Res. Dev. 28(3), 322 (1984).

    Google Scholar 

  37. N. Reis, C. Ainsley, and B. Derby: Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97(9), (2005).

  38. J. Jacquemin, P. Husson, A.A.H. Padua, and V. Majer: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8(2), 172 (2006).

    Article  CAS  Google Scholar 

  39. M.G. Freire, P.J. Carvalho, A.M. Fernandes, I.M. Marrucho, A.J. Queimada, and J.A.P. Coutinho: Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. J. Colloid Interface Sci. 314(2), 621 (2007).

    Article  CAS  Google Scholar 

  40. A.B. Pereiro, P. Verdía, E. Tojo, and A. Rodríguez: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52(2), 377 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been partially funded by the IAPP Marie Curie action ACAPOLY (no PIAP-GA-2008-218075) of the 7th Framework Program of the EU, the Spanish Ministry for Science and Technology (MAT2009-14695-C04-01), the Junta of Extremadura (GRU10149), and FEDER. Julia Perera-Nuñez acknowledges Junta de Extremadura for a predoctoral grant. The authors are pleased to acknowledge the EPFL Center of MicroNano Technology (CMI) for their valuable discussions and help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor J. Cadarso or Jürgen Brugger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadarso, V.J., Perera-Nuñez, J., Mendez-Vilas, A. et al. Microdrop generation and deposition of ionic liquids. Journal of Materials Research 29, 2100–2107 (2014). https://doi.org/10.1557/jmr.2014.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.162

Navigation