Skip to main content
Log in

Fracture transitions in iron: Strain rate and environmental effects

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A number of recent mechanical property studies have sought to validate atomistic and multiscale models with matching experimental volumes. One such property is the ductile-brittle transition temperature (DBTT). Currently no model exists that incorporates both external and internal variables in an analytical model to address both length scales and environment. Using thermally activated parameters for dislocation plasticity, the present study attempts a small piece of this. With activation energy and activation volumes previously determined for single and polycrystalline Fe-3% Si, predictions of DBTT both with and without atmospheric hydrogen are made. These are compared with standard fracture toughness measurements similarly for samples both with and without atmospheric hydrogen. In the hydrogen-free samples, average strain rate varied by four orders of magnitude. DBTT shifts are experimentally found and predicted to increase 100 K or more with either increasing strain rate or exposure to hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Kelly, W.R. Tyson, and A.H. Cottrell: Ductile and brittle crystals. Philos. Mag. 15(135), 567–586 (1967).

    Article  CAS  Google Scholar 

  2. D.S. Dugdale: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960).

    Article  Google Scholar 

  3. G.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7(1), 55–129 (1962).

    Article  Google Scholar 

  4. C. St. John: The brittle-to-ductile transition in precleaved silicon single crystals. Philos. Mag. 32(6), 1193–1212 (1975).

    Article  CAS  Google Scholar 

  5. P. Gumbsch: Modelling brittle and semi-brittle fracture processes. Mater. Sci. Eng., A 319–321, 1–7 (2001).

    Article  Google Scholar 

  6. I-H. Lin and R. Thomson: Cleavage, dislocation emission and shielding for cracks under load. Acta Metall. 34(2), 187–206 (1986).

    Article  CAS  Google Scholar 

  7. M.J. Lii, X.F. Chen, Y. Katz, and W.W. Gerberich: Dislocation modeling and acoustic emission observation of alternating ductile/brittle events in Fe-3 wt% Si crystals. Acta Mater. 38(12), 2435–2453 (1990).

    Article  CAS  Google Scholar 

  8. P.G. Marsh and W.W. Gerberich: A microscopically shielded Griffith criterion for cleavage in grain-oriented silicon steel. Acta Metall. Mater. 42(3), 613–619 (1994).

    Article  CAS  Google Scholar 

  9. J. Samuels, S.G. Roberts, and P.B. Hirsch: The brittle-to-ductile transition in silicon. Mat. Sci. Eng., A 105, 39–46 (1988).

    Article  Google Scholar 

  10. J. Samuels and S.G. Roberts: The brittle-ductile transition in silicon. I. Experiments. Proc. R. Soc. London, A 421(1860), 1–23 (1989).

    Article  CAS  Google Scholar 

  11. S.G. Roberts and P.B. Hirsch: Modelling the upper yield point and the brittle-ductile transition of silicon wafers in three-point bend tests. Philos. Mag. A 86(25–56), 4099–4116 (2006).

    Article  CAS  Google Scholar 

  12. B. Devincre and S.G. Roberts: Three-dimensional simulation of dislocation-crack interactions in BCC metals at the mesoscopic scale. Acta Mater. 44(6), 2891–2900 (1996).

    Article  CAS  Google Scholar 

  13. Y. Qiao and A.S. Argon: Cleavage cracking resistance of high angle grain boundaries in Fe-3% Si alloy. Mech. Mater. 35(3), 313–331 (2003).

    Article  Google Scholar 

  14. H. Huang and W.W. Gerberich: Crack-tip dislocation emission arrangements for equilibrium–II. Comparisons to analytical and computer simulation models. Acta Metall. Mater. 40(11), 2873–2881 (1992).

    Article  CAS  Google Scholar 

  15. J. Song and W.A. Curtin: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2012).

    Article  Google Scholar 

  16. A. Giannattasio and S.G. Roberts: Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos. Mag. 87(17), 2589–2598 (2007).

    Article  CAS  Google Scholar 

  17. W.W. Gerberich, D.D. Stauffer, A.R. Beaber, and N.I. Tymiak: A brittleness transition in silicon due to scale. J. Mater. Res. 27(3), 552–561 (2012).

    Article  CAS  Google Scholar 

  18. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, and M.I. Baskes: Interpretations of indentation size effects. J. Appl. Mech. 69(4), 433–442 (2002).

    Article  CAS  Google Scholar 

  19. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, and R. Ballarini: Scale effects for strength, ductility and toughness in brittle materials. J. Mater. Res. 24(3), 898–906 (2009).

    Article  CAS  Google Scholar 

  20. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P. McMurry, and W.W. Gerberich: Compressive stress effects on nanoparticle modulus and fracture. Phys. Rev. B 75(21), 214112 (2007).

    Article  Google Scholar 

  21. A.H. Cottrell and B.A. Bilby: Dislocation theory of yielding and strain ageing in iron. Proc. Phys. Soc. A 62(1), 49 (1949).

    Article  Google Scholar 

  22. F. Garofalo: The dependence of the lower yield strength in iron and steel on grain size and temperature. Metall. Trans. 3(12), 3115–3119 (1972).

    Article  CAS  Google Scholar 

  23. Y.T. Chen, D.G. Atteridge, and W.W. Gerberich: Plastic flow of Fe-binary alloys—I. A description at low temperatures. Acta Metall. 29(6), 1171–1185 (1981).

    Article  CAS  Google Scholar 

  24. C.H. Ersland: Atomistic modeling of failure in iron. Ph.D. thesis, Norwegian University of Science and Technology, 2012.

  25. A. Barnoush, C. Bies, and H. Vehoff: In situ electrochemical nanoindentation of FeAl (100) single crystal: Hydrogen effect on dislocation nucleation. J. Mater. Res. 24(3), 1105–1113 (2009).

    Article  CAS  Google Scholar 

  26. X. Gao: Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal. Scr. Mater. 53(11), 1315–1320 (2005).

    Article  CAS  Google Scholar 

  27. P.G. Marsh: Prediction of fracture toughness, stress-corrosion cracking thresholds and corrosion fatigue thresholds in iron-base materials. PhD Thesis, University of Minnesota, 1994.

  28. W.W. Gerberich, P.G. Marsh, and H. Huang: The effect of local dislocation arrangements on hydrogen-induced cleavage. In Fundamental Aspects of Stress Corrosion Cracking, TMS/ASM Parkins Symposium, TMS, Warrendale, PA, Vol. 191204 (1992).

    Google Scholar 

  29. A. Barnoush and H. Vehoff: In situ electrochemical nanoindentation: A nanomechanics approach to rank hydrogen embrittlement in extremely small volumes. In Proceedings of the 2008 International Hydrogen Conference (ASM International), 187194 (2009).

  30. R. Kircheim: Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen. Scr. Mater. 67, 767–770 (2012).

    Article  Google Scholar 

  31. I.M. Robertson and H.K. Birnbaum: An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall. 34(3), 353–386 (1986).

    Article  CAS  Google Scholar 

  32. P. Sofronis and H.K. Birnbaum: Mechanics of the hydrogen-impurity-interactions: Part I–Increasing shear modulus. J. Mech. Phys. Solids 43(1), 49–90 (1995).

    Article  Google Scholar 

  33. M. Tanaka, E. Tarleton, and S. Roberts: The ductile-brittle transition in single-crystal iron. Acta Mater. 56(18), 5123–5129 (2008).

    Article  CAS  Google Scholar 

  34. Y-B. Xin and K.J. Hsia: Simulation of the brittle-ductile transition in silicon single crystals using dislocation mechanics. Acta Mater. 45(4), 1747–1759 (1997).

    Article  CAS  Google Scholar 

  35. A. Hartmaier and P. Gumbsch: Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure. Phys. Rev. B 71(2), 024108 (2005).

    Article  Google Scholar 

  36. K. Nibur, D. Bahr, and B. Somerday: Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 5(10), 2677–2684 (2006).

    Article  Google Scholar 

  37. M. Itakura, H. Kaburaki, M. Yamaguchi, and T. Okita: The effect of hydrogen atom on the screw dislocation mobility in BCC iron: A first principles study. Cond. Mat. Mater. Sci. April, 2013, arxiv: 1304.0602v2.

  38. F.A. McClintock and G.R. Irwin: Plasticity aspects of fracture mechanics. ASTM STP 381, 84–113 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Hintsala.

APPENDIX: DETERMINATION OF THERMALACTIVATION PARAMETERS AS DEPENDENT ON YIELD STRENGTH

APPENDIX: DETERMINATION OF THERMALACTIVATION PARAMETERS AS DEPENDENT ON YIELD STRENGTH

Use of the yield stress in determining the effective stress and the strain rate from Eqs. (6) and (7) was invoked by choosing the selected distance from the crack tip to be the elastic–plastic boundary for convenience. This is accomplished here using a plane-strain estimate for the early stages of yielding, knowing that the same equation also applies to plane stress at the later stages. From McClintock and Irwin’s early article on plasticity at crack tips,38 the continuum representation of the strain distribution for the Mode I analogy of the Mode III result is

$${{\rm{\varepsilon }}_{\rm{p}}} = {{{{\rm{\sigma }}_{{\rm{ys}}}}} \over E}\left( {{{{R_{\rm{p}}}} \over r} - 1} \right)\,\sim\,{{{R_{\rm{p}}}} \over r}{{{{\rm{\sigma }}_{{\rm{ys}}}}} \over E}\quad ,$$
(A1)

where Rp is the plastic zone diameter, σys and E are the yield strength and modulus, and r is the distance from the crack tip. Given that \({R_{\rm{p}}} = {{K_{\rm{I}}^2} \over {3{\rm{\pi \sigma }}_{{\rm{ys}}}^2}}\) using the inverse method approximation for the plastic zone size, this gives

$${{\rm{\varepsilon }}_{\rm{p}}} = {{K_{\rm{I}}^2{{\rm{\sigma }}_{{\rm{ys}}}}} \over {3{\rm{\pi \sigma }}_{{\rm{ys}}}^2Er}}\quad .$$
(A2)

This is differentiated with respect to time giving dε/dt as \({\rm{\dot \varepsilon }}\) at Rp = r to be

$${\rm{\dot \varepsilon }} = {{2{{\dot K}_{\rm{I}}}{{\rm{\sigma }}_{{\rm{ys}}}}} \over {E{K_{\rm{I}}}}}\quad ,$$
(A3)

which is Eq. (7) in the text. A value of KI ≃ 30 MPa m1/2 was used which approximately represented the mean value of KI applied. Choosing a different value of KI would only shift the curves in Figs. 6 and 7 slightly, which could be shifted back with a slight variation of Ψ0. The results for temperature varying from 160 to 300 for the three applied stress intensity rates used are given in Table A. Values of yield strength from Fig. 3 were utilized.

TABLE A Values of strain rate versus temperature for three stress intensity rates.

A tabulation of the values at 20 K intervals for the extremes is shown in Table A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintsala, E., Teresi, C., Wagner, A.J. et al. Fracture transitions in iron: Strain rate and environmental effects. Journal of Materials Research 29, 1513–1521 (2014). https://doi.org/10.1557/jmr.2014.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.142

Navigation