Skip to main content
Log in

Shaping of ceramic parts by selective laser melting of powder bed

  • Ceramic
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laser additive manufacturing allows the production of polymeric or metallic parts with complex shapes. A major advantage of this contactless technology is that it allows reaching very high energy densities with an excellent precision in short times. This is very suitable for processing hard refractory metals for instance. Unfortunately, current results are less satisfactory for ceramics as a consequence of their intrinsic properties such as a low thermal shock resistance and very high refractoriness. Another significant limitation is related to the poor absorptivity of oxide ceramics in the near-infrared region which is typical for most commercial selective laser melting (SLM) machines. This study considers an alternative to overcome the above-mentioned limitations, especially the lack of absorptivity. SLM of oxide ceramics has become possible. Large parts with complex shapes and relative densities up to 90% have been manufactured on a commercial SLM machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. D.L. Bourell, H.L. Marcus, J.W. Barlow, and J.J. Beaman: Laser sintering of metals and ceramics. Int. J. Powder Metall. 28(4), 369 (1992).

    CAS  Google Scholar 

  2. J-P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. Ann. CIRP 56(2), 730 (2007).

    Article  Google Scholar 

  3. L. Pawlowski: Thick laser coatings: A review. J. Therm. Spray Technol. 8(2), 279 (1999).

    Article  CAS  Google Scholar 

  4. R. Kniter and W. Bauer: Ceramic microfabrication by rapid prototyping process chains. Sadhana 28, 307 (2003).

    Article  Google Scholar 

  5. J. Wilkes and K. Wissenbach: Rapid manufacturing of ceramic components for medical and technical applications via selective laser melting. In Euro-uRapid, Frankfurt, Vol. A4-1 (2006).

  6. R. Lenk, A. Nagy, H-J. Richter, and A. Techel: Material development for laser sintering of silicon carbide. Cfi/Ber. DKG 83, 41 (2006).

    Google Scholar 

  7. Y. Yang, X. Bai, Z. Xie, T. Kuang, Z. Liu, Y. Zhuang, B. Tong, and Y. Liang: Influence of additive silica on the laser melting of the ceramic coatings. J. Mater. Sci. Technol. 19, 33 (2003).

    Article  CAS  Google Scholar 

  8. D.H. Matthiesen and W.T. Petuskey: Solidification microstructures of laser-melted alumina powder compacts. J. Am. Ceram. Soc. 68, 114 (1985).

    Article  Google Scholar 

  9. Y. Wu, J. Du, K-L. Choy, and L.L. Hench: Laser densification of alumina powder beds generated using aerosol assisted spray deposition. J. Eur. Ceram. Soc. 27, 4727 (2007).

    Article  CAS  Google Scholar 

  10. K.M. Jasim, R.D. Rawlings, and D.R.F. West: Operating regimes for laser surface engineering of ceramics. J. Mater. Sci. 27, 1937 (1992).

    Article  CAS  Google Scholar 

  11. X. Tian, J. Günster, J. Melcher, D. Li, and J.G. Heinrich: Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi’s method. J. Eur. Ceram. Soc. 29, 1903 (2009).

    Article  CAS  Google Scholar 

  12. D. Hellrung, L-Y. Yeh, F. Depiereux, A. Gillner, and R. Poprawe: High-accuracy micromachining of ceramics by frequency-tripled Nd:YAG-lasers. In Proc. of the SPIE Conference on Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, Vol. 3618, 348 (1999).

  13. D.T. Pham, S.S. Dimov, and P.V. Petkov: Laser milling of ceramic component. Int. J. Mach. Tools Manuf. 47, 618 (2007).

    Article  Google Scholar 

  14. T.M. Shao, X.C. Lin, and M. Zhou: Absorption of some powder materials to YAG laser. Sci. China, Ser. A 44(S1), 489 (2001).

    CAS  Google Scholar 

  15. J. Deckers, K. Shazad, J. Vleuels, and J.P. Kruth: Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyping J. 18, 409 (2012).

    Article  Google Scholar 

  16. N.K. Tolochko, T. Laoui, Y.V. Khlopkov, S.E. Mozzharov, V.I. Titov, and M.B. Ignatiev: Absorbance of powder materials suitable for laser sintering. Rapid Prototyping J. 6, 155 (2000).

    Article  Google Scholar 

  17. X. Su and Y. Yang: Research on track overlapping during selective laser melting of powders. J. Mater. Process Technol. 212, 2074 (2012).

    Article  Google Scholar 

  18. X. Tian, T. Mühler, C. Gomez, J. Günster, and J.G. Heinrich: Feasibility study on rapid prototyping of porcelain products. J. Ceram. Sci. Technol. 02, 217 (2011).

    Google Scholar 

  19. Ph. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov: Ceramic components manufacturing by selective laser sintering. Appl. Surf. Sci. 254, 989 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The European Regional Development Fund (ERDF) and Wallonia, are gratefully acknowledged for their financial support of this research project (Revêtements Fonctionnels — LASESURF — ECV12020010884F-830033) in the frame of the “Convergence programme”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Juste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juste, E., Petit, F., Lardot, V. et al. Shaping of ceramic parts by selective laser melting of powder bed. Journal of Materials Research 29, 2086–2094 (2014). https://doi.org/10.1557/jmr.2014.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.127

Navigation