Skip to main content

Laser Polishing of Additive Manufactured AlSi10Mg Parts with an Oscillating Laser Beam

  • Chapter
  • First Online:
Machining, Joining and Modifications of Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 61))

Abstract

Powder-bed based additive manufacturing techniques, such as selective laser melting (SLM), are gaining in importance due to the opportunity to produce highly complex shapes. This offer new construction possibilities in the design. However, the surface of the produced SLM parts exhibit a high roughness which can affect the integrity and geometric tolerance. To reduce the surface roughness and to improve the mechanical properties of the outmost layer, laser polishing by re-melting the surface can be used. The present paper focus on the laser polishing of additive manufactured parts. This investigation contains measurement results of the initial and laser polished surfaces out of AlSi10Mg. The surfaces have been analyzed by roughness spectroscopy and white light interferometry. By utilizing a disk laser with a maximum power of 4 kW in combination with a 1-D scanner system, the initial surface roughness was reduced up to 92 %.

The original version of this chapter was revised: Affiliations of two authors were modified in the chapter. The erratum to this chapter is available at 10.1007/978-981-10-1082-8_19

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-981-10-1082-8_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toyserkani, E., Corbin, S., Khajepour A.: Laser Cladding (2005)

    Google Scholar 

  2. Ashby, M.F.: Materials and the Environment: Eco-informed Material Choice. Butterworth-Heinemann, Amsterdam (2009)

    Google Scholar 

  3. Kruth, J.P., et al.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730–759 (2007)

    Article  Google Scholar 

  4. Kruth, J.P., et al.: Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: International Conference on Polymers and Moulds Innovations (PMI), Gent, Belgium, 2005

    Google Scholar 

  5. Kempen, K., et al.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39, 439–446 (2012)

    Article  Google Scholar 

  6. Brandl, E., et al.: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

  7. Mower, T.M., Long, M.J.: Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 651, 198–213 (2016)

    Article  Google Scholar 

  8. Aboulkhair, N.T., et al.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4, 77–86 (2014)

    Article  Google Scholar 

  9. Yasa, E., Kruth, J.-P.: Application of laser re-melting on selective laser melting parts. Adv. Prod. Eng. Manag. 6(4), 259–270 (2011)

    Google Scholar 

  10. Monroy, K., Delgado, J., Ciurana, J.: Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng. 63, 361–369 (2013)

    Article  Google Scholar 

  11. Wohlers, T.T.: Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Wohlers Associates, Fort Collins (2014)

    Google Scholar 

  12. Yasa, E., Kruth, J.P.: Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng. 19, 389–395 (2011)

    Article  Google Scholar 

  13. Hitzler, L., et al.: Non-destructive evaluation of AlSi10Mg prismatic samples generated by selective laser melting: influence of manufacturing conditions. Materialwissenschaft und Werkstofftechnik. 5 (2016) (to be published)

    Google Scholar 

  14. Zhang, B., Liao, H., Coddet, C.: Effects of processing parameters on properties of selective laser melting Mg–9 %Al powder mixture. Mater. Des. 34, 753–758 (2012)

    Article  Google Scholar 

  15. Gebhardt, A., Hötter, J.-S., Ziebura, D.: Impact of SLM build parameters on the surface quality. RTejournal - Forum für Rapid Technologie (2014)

    Google Scholar 

  16. Calignano, F., et al.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)

    Article  Google Scholar 

  17. Kruth, J.P., Yasa, E., Deckers. J.: Experimental investigation of laser surface re-melting for the improvement of selective laser melting process. In: Proceedings of 14èmes Assises Européennes du prototypage Rapide, pp. 321–332 (2009)

    Google Scholar 

  18. Campanelli, S.L., et al.: Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts. Procedia CIRP 12, 462–467 (2013)

    Article  Google Scholar 

  19. DMG Mori: 02 Mar 2016. Available from: http://en.dmgmori.com/technical-press/advanced-technologies/live-at-emo-2015—lasertec-65-3d—additive-manufacturing-of-a-small-turbine-casing-made-of-stainless-steel/386000

  20. Łyczkowska, E., et al.: Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch. Civ. Mech. Eng. 14(4), 586–594 (2014)

    Article  Google Scholar 

  21. Manfredi, D., et al.: Additive manufacturing of al alloys and aluminium matrix composites (AMCs). Light Metal Alloy. Appl. 1–32 (2014)

    Google Scholar 

  22. Li, Y., et al.: Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher. Int. J. Mach. Tools Manuf. 77, 93–102 (2014)

    Article  Google Scholar 

  23. Tsai, M.-Y., Yang, W.-Z.: Combined ultrasonic vibration and chemical mechanical polishing of copper substrates. Int. J. Mach. Tools Manuf. 53(1), 69–76 (2012)

    Article  Google Scholar 

  24. Willenborg, E.: Polieren von Werkzeugstählen mit Laserstrahlung. Shaker, Aachen (2006)

    Google Scholar 

  25. Temmler, A.: Selektives Laserpolieren von metallischen Funktions- und Designoberflächen. Shaker-Verl, Aachen (2013)

    Google Scholar 

  26. Schmidt, J., Scholz, R., Riegel, H.: Laserpolieren von Aluminium durch Umschmelzen mit Hochenergieimpulsen (Laser polishing of aluminum by remelting with high energy pulses). MAWE Materialwissenschaft und Werkstofftechnik 46(7), 686–691 (2015)

    Article  Google Scholar 

  27. Stein, S., et al.: Hardening and roughness reduction of carbon steel by laser polishing. In: Öchsner, A., Altenbach, H. (eds.) Design and Computation of Modern Engineering Materials, pp. 411–419. Springer International Publishing, Cham (2014)

    Google Scholar 

  28. Nusser, C., et al.: Influence of intensity distribution and pulse duration on laser micro polishing. Phys. Procedia 12(PART 1), 462–471

    Google Scholar 

  29. Wong, T.T., Liang, G.Y., Tang, C.Y.: The surface character and substructure of aluminium alloys by laser-melting treatment. J. Mater. Process. Technol. 66, 172–178 (1997)

    Article  Google Scholar 

  30. Kiedrowski, T.: Oberflächenstrukturbildung beim Laserstrahlpolieren von Stahlwerkstoffen. Shaker, Aachen (2009)

    Google Scholar 

  31. Hafiz, A.M.K.B., Evgueni, V., Tutunea-Fatan, R.O.: Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. J. Manuf. Process. 14(4), 425–434 (2012)

    Google Scholar 

  32. Pariona, M.M., et al.: AFM study of the effects of laser surface remelting on the morphology of Al–Fe aerospace alloys. Mater. Charact. 74, 64–76 (2012)

    Article  Google Scholar 

  33. Cabrini, M., et al.: Evaluation of corrosion resistance of Al–10Si–Mg alloy obtained by means of direct metal laser sintering. J. Mater. Process. Technol. 231, 326–335 (2016)

    Article  Google Scholar 

  34. Lamikiz, A., et al.: Laser polishing of parts built up by selective laser sintering. Int. J. Mach. Tools Manuf. 47(12–13), 2040–2050 (2007)

    Article  Google Scholar 

  35. Kumstel, J., Kirsch, B.: Polishing titanium- and nickel-based alloys using CW-laser radiation. Phys. Procedia 41, 362–371 (2013)

    Article  Google Scholar 

  36. Perry, T. L., et al.: Pulsed laser polishing of micro-milled Ti6Al4V samples. JMP J. Manuf. Process. 11(2), 74–81 (2009)

    Article  Google Scholar 

  37. Rosa, B., Mognol, P., Hascoët, J.-Y.: Laser polishing of additive laser manufacturing surfaces. J. Laser Appl. 27(S2), S29102 (2015)

    Article  Google Scholar 

  38. Ukar, E., et al.: Laser polishing of tool steel with CO2 laser and high-power diode laser. Int. J. Mach. Tools Manuf. 50(1), 115–125 (2010)

    Article  Google Scholar 

  39. Marimuthu, S., et al.: Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 95, 97–104 (2015)

    Article  Google Scholar 

  40. Vaithilingam, J., et al.: The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J. Mater. Process. Technol. 232, 1–8 (2016)

    Article  Google Scholar 

  41. Alrbaey, K., et al.: On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J. Mater. Eng. Perform. 23(6), 2139–2148 (2014)

    Article  Google Scholar 

  42. Laser Applikations Zentrum (LAZ). Aalen University of Applied Sciences. https://www.htw-aalen.de/de/facilities/97 (2016). Accessed 04 Mar 2016

  43. EN ISO 4288—Geometrical product specifications (GPS)—surface texture: profile method–rules and procedures for the assessment of surface texture. International Organization for Standardization, Genève (1996)

    Google Scholar 

  44. EN ISO 4287—Geometrical product specifications (GPS)–surface texture: profile method–terms, definitions and surface texture parameters. International Organization for Standardization, Genève (1997)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael Sedlmajer, René Klink, Simon Ruck and the team of Joachim Albrecht, who supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Schanz, J., Hofele, M., Hitzler, L., Merkel, M., Riegel, H. (2016). Laser Polishing of Additive Manufactured AlSi10Mg Parts with an Oscillating Laser Beam. In: Öchsner, A., Altenbach, H. (eds) Machining, Joining and Modifications of Advanced Materials . Advanced Structured Materials, vol 61. Springer, Singapore. https://doi.org/10.1007/978-981-10-1082-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1082-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1081-1

  • Online ISBN: 978-981-10-1082-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics