Skip to main content
Log in

Effects of heat treatment and coatings on the infrared emissivity properties of carbon fibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The infrared emissivity properties of carbon fibers with different treatments were investigated in the wave length range 6–15 μm from 1273 to 1873 K. The heat treatment affected the infrared emissivity of carbon fibers through the microstructure evolution. The Raman investigation about the microstructure indicated that the increase of the graphitization degree in carbon fibers degenerated the infrared emissivity of carbon fibers, especially under high temperatures. For the coated carbon fibers, the infrared emissivity properties were decreased for carbon fibers coated pyrolytic carbon (PyC) due to the lamellar structure of PyC and increased for carbon fibers deposited carbon nanotubes (CNTs) owing to the skeleton-like structure of CNTs. The study also illustrated that the PyC coating thickness from 0.5 to 1.0 μm had few effects on the infrared emissivity properties of carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. S. Chand: Review carbon fibers for composites. J. Mater. Sci. 35, 1303–1313 (2000).

    Article  CAS  Google Scholar 

  2. F. Wang, L. Cheng, L. Xiang, Q. Zhang, and L. Zhang: Effect of SiC coating and heat treatment on the thermal radiation properties of C/SiC composites. J. Eur. Ceram. Soc. 34, 1667–1672 (2014).

    Article  CAS  Google Scholar 

  3. D. Alfano, L. Scatteia, S. Cantoni, and M. Balat-Pichelin: Emissivity and catalycity measurements on SiC-coated carbon fibre reinforced silicon carbide composite. J. Eur. Ceram. Soc. 29, 2045–2051 (2009).

    Article  CAS  Google Scholar 

  4. H. Mei, L. Cheng, L. Zhang, X. Luan, and J. Zhang: Behavior of two-dimensional C/SiC composites subjected to thermal cycling in controlled environments. Carbon 44, 121–127 (2006).

    Article  CAS  Google Scholar 

  5. J. Ma, Y. Xu, L. Zhang, L. Cheng, J. Nie, and H. Li: Preparation and mechanical properties of C/SiC composites with carbon fiber woven preform. Mater. Lett. 61, 312–315 (2007).

    Article  CAS  Google Scholar 

  6. L. Cheng, Y. Xu, L. Zhang, and X. Yin: Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500°C. Mater. Sci. Eng., A 300, 219–225 (2001).

    Article  Google Scholar 

  7. Q. Song, K. Li, H. Li, H. Li, and C. Ren: Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites. Carbon 50, 3949–3952 (2012).

    Article  CAS  Google Scholar 

  8. H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, and A. Bismarck: Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 20, 4751–4762 (2010).

    Article  CAS  Google Scholar 

  9. M.F. Modest: Radiative Heat Transfer (Academic Press, San Diego, 2003), pp. 1–29.

    Book  Google Scholar 

  10. M. Endo, K. Nishimura, Y.A. Kim, K. Hakamada, T. Matushita, M.S. Dresselhaus, and G. Dresselhaus: Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons. J. Mater. Res. 14, 4474–4477 (1999).

    Article  CAS  Google Scholar 

  11. V. De Pauw, B. Reznik, S. Kalhöfer, D. Gerthsen, Z.J. Hu, and K.J. Hüttinger: Texture and nanostructure of pyrocarbon layers deposited on planar substrates in a hot-wall reactor. Carbon 41, 71–77 (2003).

    Article  Google Scholar 

  12. R. Siegel and J.R. Howell: Thermal Radiation Heat Transfer (Taylor & Francis, New York, 2002), p. 5–26.

    Google Scholar 

  13. A. Gao, C. Zhao, S. Luo, Y. Tong, and L. Xu: Correlation between graphite crystallite distribution morphology and the mechanical properties of carbon fiber during heat treatment. Mater. Lett. 65, 3444–3446 (2011).

    Article  CAS  Google Scholar 

  14. L.H. Peebles: Carbon fibres: Structure and mechanical properties. Int. Mater. Rev. 39, 75–92 (1994).

    Article  CAS  Google Scholar 

  15. F. Wang, L. Cheng, H. Mei, Q. Zhang, and L. Zhang: Effect of surface microstructures on the infrared emissivity of graphite. Int. J. Thermophys. 35, 62–75 (2014).

    Article  Google Scholar 

  16. B. Reznik and K.J. Hüttinger: On the terminology for pyrolytic carbon. Carbon 40, 621–624 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the Natural Science Foundation of China (No. 51032006 and No. 51302220) and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cheng, L., Zhang, Q. et al. Effects of heat treatment and coatings on the infrared emissivity properties of carbon fibers. Journal of Materials Research 29, 1162–1167 (2014). https://doi.org/10.1557/jmr.2014.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.106

Navigation