Skip to main content
Log in

Modification of the Surface of a Carbon Fiber under High-Fluence Irradiation with Carbon Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of the effect of high-fluence irradiation (fluence ~3 × 1018 cm–2) with 30-keV C+ ions at a temperature of 250°C on the structure and surface morphology of polyacrylonitrile-based carbon fibers reinforcing the composite KUP-VM are presented and discussed. Scanning electron microscopy shows that the irradiation of carbon fibers with their own ions does not lead, as in the cases of irradiation with ions of inert gases and nitrogen, to corrugation of the fiber surface. The roughness of the composite surface remains comparable to the nonirradiated sample. According to Raman-spectroscopy data, irradiation with carbon ions at temperatures above that of dynamic annealing of radiation-induced damage leads to the formation of a disordered graphite-like layer, as in the cases of irradiation with inert-gas ions. The lack of corrugation of the carbon-fiber surface under irradiation with carbon ions is associated with the lack of a gradient of radiation-induced damage in the modified layer and a texture characteristic of a carbon-fiber shell based on polyacrylonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Virgil’ev and I. P. Kalyagina, Inorg. Mater. 40, 33 (2004).

    Article  Google Scholar 

  2. V. Ya. Varshavskii, Carbon Fibers (VINITI, Moscow, 2005).

    Google Scholar 

  3. A. I. Meleshko and S. P. Polovnikov, Carbon, Carbon Fibers, Carbon Composites (Sains-Press, Moscow, 2007) [in Russian].

    Google Scholar 

  4. N. N. Andrianova, V. A. Anikin, A. M. Borisov, et al., Bull. Russ. Acad. Sci.: Phys. 82, 122 (2018).

    Article  CAS  Google Scholar 

  5. V. A. Anikin, A. M. Borisov, A. V. Makunin, et al., Phys. At. Nucl. 81, 1547 (2018).

    Article  CAS  Google Scholar 

  6. A. M. Borisov, N. G. Chechenin, V. A. Kazakov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 460, 132 (2019).

    CAS  Google Scholar 

  7. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 231 (2020).

    Article  CAS  Google Scholar 

  8. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., Bull. Russ. Acad. Sci.: Phys. 84, 707 (2020).

    Article  CAS  Google Scholar 

  9. X. Guo, K. Zhang, J. Cheng, et al., Appl. Surf. Sci. 475, 571 (2019).

    Article  CAS  Google Scholar 

  10. T. D. Burchell, MRS Bull. 22 (4), 29 (1997).

    Article  CAS  Google Scholar 

  11. A. M. Borisov, Yu. S. Virgil’ev, and E. S. Mashkova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 52 (2008).

    Google Scholar 

  12. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, et al., in Horizons in World Physics (Nova Science, New York, 2013), Vol. 280, p. 171.

  13. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, et al., Vacuum 188, 110177 (2021).

    Article  CAS  Google Scholar 

  14. D. J. Bacon and A. S. Rao, J. Nucl. Mater. 91, 178 (1980).

    Article  CAS  Google Scholar 

  15. D. Liu, D. Cherns, S. Johns, et al., Carbon 173, 215 (2021).

    Article  CAS  Google Scholar 

  16. A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., Vacuum 148, 195 (2018).

    Article  CAS  Google Scholar 

  17. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985).

    Google Scholar 

  18. P. Ehrhart, W. Schilling, and H. Ullmaier, “Radiation damage in crystals,” in Digital Encyclopedia of Applied Physics (Wiley, Weinheim, 2003), p. 429.

    Google Scholar 

  19. J. F. Ziegler and J. P. Biersack, SRIM, 2013. http://www.srim.org.

  20. V. I. Shulga, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 562 (2019).

    Article  CAS  Google Scholar 

  21. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 315, 117 (2013).

    CAS  Google Scholar 

  22. G. Carter, R. Webb, and R. Collins, Radiat. Eff. 37, 21 (1978).

    Article  CAS  Google Scholar 

  23. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  24. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, et al., Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  CAS  Google Scholar 

  25. N. Larouche and B. L. Stansfield, Carbon 48, 620 (2010).

    Article  CAS  Google Scholar 

  26. N. N. Andrianova, A. M. Borisov, E. C. Mashkova, and Y. S. Virgiliev, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2778 (2009).

    CAS  Google Scholar 

Download references

FUNDING

The study was supported by a grant from the Russian Science Foundation (project no. 21-79-30 058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.M., Vysotina, E.A., Mashkova, E.S. et al. Modification of the Surface of a Carbon Fiber under High-Fluence Irradiation with Carbon Ions. J. Surf. Investig. 16, 211–216 (2022). https://doi.org/10.1134/S1027451022030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030089

Keywords:

Navigation