Skip to main content
Log in

Influence of porosity on the transport properties of Bi2Te3-based alloys by field-assisted sintering

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Retention of a nanostructure in thermoelectric materials through rapid sintering (e.g., field-assisted sintering) is generally associated with leaving certain amounts of porosity due to short sintering times. In this study, the influence of porosity on the thermoelectric transport properties in Bi2Te3-based alloys was studied by changing the sintering pressure during spark plasma sintering. N-type Bi2Te3 and p-type (Bi0.2Sb0.8)2Te3 were sintered at 673 K using pressures from 50 to 300 MPa to obtain different levels of porosity. Electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentrations, and Hall mobility were measured and characterized. The results show that increasing sintering pressure is effective in reducing porosity, which lowers electrical resistivity and increases the carrier concentrations. The transport properties were fitted to general effective medium equations and demonstrate that in p-type (Bi0.2Sb0.8)2Te3 sintered at high pressures, decreases in electrical resistivity and lattice thermal conductivity exceeded the Seebeck coefficient reduction, improving the thermoelectric figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J-P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  2. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010).

    Article  CAS  Google Scholar 

  3. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  4. N. Bomshtein, G. Spiridonov, Z. Dashevsky, and Y. Gelbstien: Thermoelectric, structural, and mechanical properties of spark-plasma-sintered submicro- and microstructured p-type Bi0.5Sb1.5Te3. J. Electron. Mater. 41, 1546–1553 (2012).

    Article  CAS  Google Scholar 

  5. L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10, 651–658 (2008).

    Article  CAS  Google Scholar 

  6. Z. Zhang, P.A. Sharma, E.J. Lavernia, and N. Yang: Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. J. Mater. Res. 26, 475–484 (2011).

    Article  CAS  Google Scholar 

  7. D.H. Kim, C. Kim, S.H. Heo, and H. Kim: Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi-Te-based thermoelectric materials. Acta Mater. 59, 405–411 (2011).

    Article  CAS  Google Scholar 

  8. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006).

    Article  CAS  Google Scholar 

  9. U. Anselmi-Tamburini, T.B. Holland, G. Spinolo, F. Maglia, I. Tredici, and A.K. Mukherjee: Field Assisted Sintering Mechanisms, in Sintering, edited by R. Castro & K. van Benthem (Springer-Verlag, Berlin Heidelberg, 2013).

    Google Scholar 

  10. M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183–188 (2000).

    Article  Google Scholar 

  11. H. Böttner, D.G. Ebling, A. Jacquot, J. König, L. Kirste, and J. Schmidt: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1, 235–237 (2007).

    Article  Google Scholar 

  12. X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan: Characterization and thermoelectric properties of p-type 25%Bi2Te3-75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering. J. Phys. D: Appl. Phys. 39, 740–745 (2006).

    Article  CAS  Google Scholar 

  13. Q. He, S. Hu, X. Tang, Y Lan, J. Yang, X. Wang, Q. Hao, and G. Chen. The great improvement effect of pores on ZT in Co1-xNixSb3 system. Appl. Phys. Lett. 93, 042108-042108-3 (2008).

  14. L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, and H-R. Wenk: Rietveld texture analysis from diffraction images. Zeitschrift für Kristallographie Supplements 2007, 125–130 (2007).

    Article  Google Scholar 

  15. G. Bardi, M. Cafaro, V. Gianfreda, and V. Piacente: Vaporization behavior and the vapor-pressure of solid Bi2Te3 high temperature. Science 16, 377–385 (1983).

    CAS  Google Scholar 

  16. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir: Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater. Sci. Eng., A 394, 139–148 (2005).

    Article  Google Scholar 

  17. K. Seeger: Semiconductor Physics: An Introduction, 9th ed. (Springer, Berlin, New York, 2004).

    Book  Google Scholar 

  18. J. Martin, L. Wang, L. Chen, and G.S. Nolas: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  19. T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer: Thermoelectric properties of (BixSb1-x)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids 53, 1121–1129 (1992).

    Article  CAS  Google Scholar 

  20. D-H. Kim and T. Mitani: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399, 14–19 (2005).

    Article  CAS  Google Scholar 

  21. G.R. Miller and C-Y. Li: Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173–177 (1965).

    Article  CAS  Google Scholar 

  22. J. Navrátil, Z. Starý, and T. Plechácek: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31, 1559–1566 (1996).

    Article  Google Scholar 

  23. Z. Starý, J. Horák, M. Stordeur, and M. Stölzer: Antisite defects in Sb2-xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29–34 (1988).

    Article  Google Scholar 

  24. G-Y. Xu, S-T. Niu, and X-F. Wu: Thermoelectric properties of p-type Bi0.5Sb1.5Te2.7Se0.3 fabricated by high pressure sintering method. J. Appl. Phys. 112, 073708-073708-12 (2012).

  25. Y. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda: Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982–4983 (2010).

    Article  CAS  Google Scholar 

  26. D-B. Hyun, J-S. Hwang, J-D. Shim, and T.S. Oh: Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method. J. Mater. Sci. 36, 1285–1291 (2001).

    Article  CAS  Google Scholar 

  27. F. Yu, B. Xu, J. Zhang, D. Yu, J. He, Z. Liu, and Y. Tian: Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater. Res. Bull. 47, 1432–1437 (2012).

    Article  CAS  Google Scholar 

  28. I. Sumirat, Y. Ando, and S. Shimamura: Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J. Porous Mater. 13, 439–443 (2006).

    Article  CAS  Google Scholar 

  29. D.J. Bergman and O. Levy: Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 6821–6833 (1991).

    Article  Google Scholar 

  30. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990).

    Article  CAS  Google Scholar 

  31. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107, 094308-094308-7 (2010).

  32. Z. Hashin and S. Shtrikman: Conductivity of polycrystals. Phys. Rev. 130, 129–133 (1963).

    Article  CAS  Google Scholar 

  33. J. Helsing: Improved bounds on the conductivity of composites by interpolation. Proc. R. Soc. London, Ser. A 444, 363–374 (1994).

    Article  CAS  Google Scholar 

  34. J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer: Thermal properties of high quality single crystals of bismuth telluride—part I: Experimental characterization. J. Phys. Chem. Solids 49, 1237–1247 (1988).

    Article  CAS  Google Scholar 

  35. Y. Gelbstein: Thermoelectric power and structural properties in two-phase Sn/SnTe alloys. J. Appl. Phys. 105, 023713-023713-5 (2009).

Download references

Acknowledgments

This research was supported by Sandia National Laboratories under contract no. 826008. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed-Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract no. DE-AC04-94AL85000. The authors would also like to acknowledge the use of the SPS-825S system which was supported by the Office of Naval Research through the Defense University Research Instrumentation Program under grant ONR-N00014-07-1-0745. Additionally, JKY would like to acknowledge the support of the Campus Executive Fellowship from Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua K. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Yee, J.K., Sharma, P.A. et al. Influence of porosity on the transport properties of Bi2Te3-based alloys by field-assisted sintering. Journal of Materials Research 28, 1853–1861 (2013). https://doi.org/10.1557/jmr.2013.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.99

Navigation