Skip to main content
Log in

Cellular solids studied by x-ray tomography and finite element modeling–a review

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article reviews the use of x-ray computed tomography (XRCT) to investigate the structure and properties of cellular solids. In the first section, the possibilities offered by XRCT are presented. Examples of tomographic images are shown for the three classes of material (polymers, metals, and ceramics). Different characterizations of cellular solids performed thanks to XRCT images are shown: calculation of morphological parameters, in situ and ex situ mechanical tests, and use of the tomographic images to perform finite element (FE) modeling. The second part of the paper presents the existing methods to create the meshes from tomographic images and highlights some interesting results from the FE simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, England, 1997), p. 510.

    Google Scholar 

  2. E. Maire: X-ray tomography applied to the characterization of highly porous materials. Annu. Rev. Mater. Res. 42, 7.1 (2012).

  3. J.Y. Buffière, E. Maire, J. Adrien, J.P. Masse, and E. Boller: In situ experiments with x ray tomography: An attractive tool for experimental mechanics. Exp. Mech. 50, 289 (2010).

    Google Scholar 

  4. J. Baruchel, J.Y. Buffière, E. Maire, P. Merle, and G. Peix: X-Ray Tomography in Materials Science (Hermès Science Publications, Paris, France, 2000), p. 204.

    Google Scholar 

  5. S.R. Stock: Recent advances in x-ray microtomography applied to materials. Int. Mater. Rev. 53, 129 (2008).

    CAS  Google Scholar 

  6. F. Fischer, G.T. Lim, U.A. Handge, and V. Altstdt: Numerical simulations of mechanical properties of cellular materials using computing tomography analysis. J. Cell. Plast. 45, 441 (2009).

    CAS  Google Scholar 

  7. S. Youssef, E. Maire, and R. Gaertner: Finite element modeling of the actual structure of cellular material determined by X-ray tomography. Acta Mater. 53, 719 (2005).

    CAS  Google Scholar 

  8. P. Viot, D. Bernard, and E. Plougonven: Polymeric foam under dynamic loading by the use of the microtomographic technique. J. Mater. Sci. 42, 7202 (2007).

    CAS  Google Scholar 

  9. S. McDonald, G. Dedreuil-Monet, Y. Yao, A. Alderson, and P. Withers: In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension. Phys. Status Solidi B 45, 248 (2011).

    Google Scholar 

  10. A. Burteau, F. N'Guyen, J.D. Bartout, S. Forest, Y. Bienvenu, S. Saberi, and D. Nauman: Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int. J. Solids Struct. 49, 2714 (2012).

    CAS  Google Scholar 

  11. E. Maire, P. Colombo, J. Adrien, L. Babout, and L. Biasetto: Characterisation of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J. Eur. Ceram. Soc. 27, 1973 (2007).

    CAS  Google Scholar 

  12. J. Zeschky, F. Goetz-Neuhoeffer, J. Neubauer, S.H. Jason Lo, B. Kummer, M. Scheffler, and P. Greil: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361 (2003).

    CAS  Google Scholar 

  13. S. Meille, M. Lombardi, J. Chevalier, and L. Montanaro: Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 32, 3959 (2012).

    CAS  Google Scholar 

  14. C. D'Angelo, A. Ortona, and P. Colombo: Finite elements analysis of reticulated ceramics under compression. Acta Mater. 60, 6692 (2012).

    CAS  Google Scholar 

  15. L. Zhang, J.M.F. Ferreira, S. Olhero, L. Courtois, E. Maire, T. Zhang, and J.C. Rauhe: Modeling the mechanical properties of optimally processed cordierite-mullite-alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Mater. 60, 4235 (2012).

    CAS  Google Scholar 

  16. D. Lacroix, A. Chateau, M.P. Ginebra, and J.A. Planell: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27, 5326 (2006).

    CAS  Google Scholar 

  17. C. Renghini, A. Giuliani, S. Mazzoni, F. Brun, E. Larsson, F. Baino, and C. Vitale-Brovarone: Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J. Eur. Ceram. Soc. DOI: 10.1016/j.jeurceramsoc.2012.10.016.

  18. Y. Okanoue, M. Ikeuchi, R. Takemasa, T. Tani, T. Matsumoto, M. Sakamoto, and M. Nakasu: Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphate. Arch. Orthop. Trauma Surg. 132, 1603 (2012).

    Google Scholar 

  19. G. Gioux, T.M. McCormack, and L.J. Gibson: Failure of aluminum foams under multiaxial loads. Inter. J. Mech. Sci. 42, 1097 (2000).

    Google Scholar 

  20. I. Jeon, T. Asahina, K.J. Kang, S. Im, and T.J. Lu: Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mech. Mater. 42, 227 (2010).

    Google Scholar 

  21. N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, and D.N. Tsipas: Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. Colloids Surf., A 382, 124 (2011).

    CAS  Google Scholar 

  22. C. Veyhl, I.V. Belova, G.E. Murch, A. Oschner, and T. Fiedler: On the mesh dependence of non-linear mechanical finite element analysis. Finite Elem. Anal. Des. 46, 371 (2010).

    Google Scholar 

  23. T. Guillén, Q.H. Zhang, G. Tozzi, A. Orhndorf, H.J. Christ, and J. Tong: Compressive behavior of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis. J. Mech. Behav. Biomed. Mater. 4, 1452 (2011).

    Google Scholar 

  24. O. Caty, E. Maire, S. Youssef, and R. Bouchet: Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements. Acta Mater. 56, 5524 (2008).

    CAS  Google Scholar 

  25. P. Lhuissier, L. Salvo, and Y. Bréchet: Quasistatic mechanical behavior of stainless steel hollow sphere foam: Macroscopic properties and damage mechanisms followed by X-ray tomography. Mater. Lett. 63, 1113 (2009).

    CAS  Google Scholar 

  26. R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, and R.J. Dashwood: Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 6, 2342 (2010).

    CAS  Google Scholar 

  27. M. Saadatfar, F. Garcia-Moreno, S. Hutzler, A.P. Sheppard, M.A. Knackestedt, J. Banhart, and D. Weaire: Imaging of metallic foams using X-ray micro-CT. Colloids Surf., A 344, 107 (2009).

    CAS  Google Scholar 

  28. S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J.P. Kruth: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng., A 528, 7423 (2011).

    CAS  Google Scholar 

  29. F. Tariq, R. Haswell, P.D. Lee, and D.W. McComb: Characterization of hierarchical pore structures in ceramics using multiscale tomography. Acta Mater. 59, 2109 (2011).

    CAS  Google Scholar 

  30. Morph: IMorph [online]. Available on: <www.imorph.com>.

  31. L. Brabant, J. Vlassenbroeck, Y. De Witte, V. Cnudde, M.N. Boone, J. Dewanckele, and L. Van Hoorebeke: Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+. Microsc. Microanal. 17, 252 (2011).

    CAS  Google Scholar 

  32. H. Toda, T. Kobayashi, M. Niimoni, T. Ohgaki, M. Kobayashi, M. Kuroda, T. Akahori, K. Uesugi, K. Makii, and Y. Aruga: Quantitative assessment of microstructure and its effect on compressive behavior of aluminum foams via high resolution synchrotron X-ray tomography. Metall. Mater. Trans. A 37, 1211 (2006).

    Google Scholar 

  33. J.L. Grenestedt and K. Tanaka: Influence of cell shape variations on elastic stiffness of closed cell cellular solids. Scr. Mater. 40, 71 (1999).

    CAS  Google Scholar 

  34. N.A. Fleck, O.B. Olurin, C. Chen, and M.F. Ashby: The effect of hole size upon the strength of metallic and polymeric foams. J. Mech. Phys. Solids 49, 2015 (2001).

    CAS  Google Scholar 

  35. E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, and J.M. Létang: X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos. Sci. Technol. 63, 2431 (2003).

    Google Scholar 

  36. C. Berre, S.L. Fok, P.M. Mummery, J. Ali, B.J. Marsden, T.J. Marrow, and G.B. Neighbour: Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modeling. J. Nucl. Mater. 381, 1 (2008).

    CAS  Google Scholar 

  37. M. Saadatfar, C.H. Arns, M.A. Knackstedt, and T. Senden: Mechanical and transport properties of polymeric foams derived from 3D images. Colloids Surf., A 263, 284 (2005).

    CAS  Google Scholar 

  38. E.J. Garboczi and A.R. Day: An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios. J. Mech. Phys. Solids 43, 349 (1995).

    Google Scholar 

  39. C.H. Arns, M.A. Knackstedt, W. Val Pinczewski, and E.J. Garboczi: Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics 67, 1396 (2002).

    Google Scholar 

  40. T. Fiedler, S.M.H. Hosseini, I.V. Belova, G.E. Murch, and A. Ochsner: A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures. Comp. Mater. Sci. 47, 314 (2009).

    CAS  Google Scholar 

  41. A.P. Roberts and E.J. Garboczi: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189 (2001).

    CAS  Google Scholar 

  42. J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, and C. Toulemonde: Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem. Concr. Res. 41, 542 (2011).

    CAS  Google Scholar 

  43. J.A. Elliott, A.H. Windle, J.R. Hobdell, G. Eeckhaut, R.J. Oldman, W. Ludwig, E. Boller, P. Cloetens, and J. Baruchel: In-situ deformation of an open-cell flexible polyurethane foam characterized by 3D computed tomography. J. Mater. Sci. 37, 1547 (2002).

    CAS  Google Scholar 

  44. D. Ulrich, B. Van Rietbergen, H. Weinans, and P. Rüegsegger: Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech. 31, 1187 (1998).

    CAS  Google Scholar 

  45. M. Vesenjak, C. Veyhl, and T. Fiedler: Analysis of anisotropy and strain rate sensitivity of open-cell metal foam. Mater. Sci. Eng., A 541, 105 (2012).

    CAS  Google Scholar 

  46. V. Marcadon, C. Davoine, B. Passilly, D. Boivin, F. Popoff, A. Rafray, and S. Kruch: Mechanical behavior of hollow-tube stackings: Experimental characterization and modeling of the role of their constitutive material behavior. Acta Mater. 60, 5626, (2012).

    CAS  Google Scholar 

  47. C. Sandino, J.A. Planell, and D. Lacroix: A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41, 1005 (2008).

    CAS  Google Scholar 

  48. C. Barbier, R. Dendievel, and D. Rodney: Numerical study of 3D-compressions of entangled materials. Comp. Mater. Sci. 45, 593 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Maire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, C., Meille, S. & Maire, E. Cellular solids studied by x-ray tomography and finite element modeling–a review. Journal of Materials Research 28, 2191–2201 (2013). https://doi.org/10.1557/jmr.2013.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.97

Navigation