Skip to main content
Log in

Microstructural Quantification and Property Prediction Using Limited X-ray Tomography Data

  • Published:
JOM Aims and scope Submit manuscript

Abstract

X-ray tomography has provided a non-destructive means for microstructure characterization in three dimensional (3D) and four dimensional (4D) (i.e., structural evolution over time), in which projections of a material’s structure are typically reconstructed using the filtered-back-projection (FBP) method or algebraic reconstruction techniques. The reconstructed images are typically segmented to conduct microstructural quantification. The process can be quite time consuming and computationally intensive. In this paper, we present an overview of our recent work on utilizing a limited (Nyquist under-sampled) number of unique perspective radiographs for computed tomography reconstruction of heterogeneous material (e.g., composites and alloys) structural quantification, property prediction and microstructural reconstruction in 3D and 4D. The proposed approach is significantly more efficient and computationally less intensive than FBP. We first show that an inverse superposition of properly normalized attenuated intensity along different x-ray paths leads to a probability map for the material system, which provides the probability of finding a particular phase at a point in the imaged sample volume. Spatial correlation functions, which are statistical morphological descriptors of the material, are readily computed from the associated probability map. Using effective medium theory and the computed correlation functions, accurate predictions of physical properties (e.g., elastic moduli and thermal/electrical conductivity) can then be obtained. Finally, we present a stochastic reconstruction procedure that generates an accurate rendition of the 3D microstructure from a reduced number of tomographic projections. This stochastic reconstruction method can be easily adapted to reconstruct 4D structural evolution from a small number of in situ projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer, 2013).

    MATH  Google Scholar 

  2. M. Sahimi, Heterogeneous Materials I: Linear Transport and Optical Properties (New York: Springer, 2003).

    MATH  Google Scholar 

  3. D. Brandon and W.D. Kaplan, Microstructural Characterization of Materials (England: Wiley, 2013).

    Google Scholar 

  4. D.T. Fullwood, S.R. Niezgoda, B.L. Adams, and S.R. Kalidindi, Prog. Mater Sci. 55, 477 (2010).

    Article  Google Scholar 

  5. H. Xu, Y. Li, C. Brinson, and W. Chen, J. Mech. Des. 136, 051007 (2014).

    Article  Google Scholar 

  6. Y.C. Yabansu, D.K. Patel, and S.R. Kalidindi, Acta Mater. 81, 151 (2014).

    Article  Google Scholar 

  7. A. Gupta, A. Cecen, S. Goyal, A.K. Singh, and S.R. Kalidindi, Acta Mater. 91, 239 (2015).

    Article  Google Scholar 

  8. H. Xu, R. Liu, A. Choudhary, and W. Chen, J. Mech. Des. 137, 051403 (2015).

    Article  Google Scholar 

  9. L. Babout, E. Maire, J.-Y. Buffière, and R. Fougeres, Acta Mater. 49, 2055 (2001).

    Article  Google Scholar 

  10. A. Borbely, F. Csikor, S. Zabler, P. Cloetens, and H. Biermann, Mater. Sci. Eng. A 367, 40 (2004).

    Article  Google Scholar 

  11. P. Kenesei, H. Biermann, and A. Borbély, Scr. Mater. 53, 787 (2005).

    Article  Google Scholar 

  12. H. Toda, S. Yamamoto, M. Kobayashi, K. Uesugi, and H. Zhang, Acta Mater. 56, 6027 (2008).

    Article  Google Scholar 

  13. A. Weck, D. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).

    Article  Google Scholar 

  14. J. Williams, Z. Flom, A. Amell, N. Chawla, X. Xiao, and F. De, Carlo. Acta Mater. 58, 6194 (2010).

    Article  Google Scholar 

  15. J.J. Williams, K.E. Yazzie, N.C. Phillips, N. Chawla, X. Xiao, F. De Carlo, N. Iyyer, and M. Kittur, Metall. Mater. Trans. A 42, 3845 (2011).

    Article  Google Scholar 

  16. J.H. Kinney and M.C. Nichols, Annu. Rev. Mater. Sci. 22, 121 (1992).

    Article  Google Scholar 

  17. J. Baruchel, P. Bleuet, A. Bravin, P. Coan, E. Lima, A. Madsen, W. Ludwig, P. Pernot, and J. Susini, C. R. Phys. 9, 624 (2008).

    Article  Google Scholar 

  18. A.C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (New York: IEEE Press, 1988).

    MATH  Google Scholar 

  19. L. Feldkamp, L. Davis, and J. Kress, JOSA A 1, 612 (1984).

    Article  Google Scholar 

  20. S.R. Kalidindi and M. De Graef, Annu. Rev. Mater. Res. 45, 171 (2015).

    Article  Google Scholar 

  21. S. Torquato and G. Stell, J. Chem. Phys. 77, 2071 (1982).

    Article  MathSciNet  Google Scholar 

  22. S. Torquato and G. Stell, J. Chem. Phys. 79, 1505 (1983).

    Article  MathSciNet  Google Scholar 

  23. S. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).

    Article  Google Scholar 

  24. H. Li, S. Singh, N. Chawla, and Y. Jiao, unpublished research (2016).

  25. S. Torquato, Phys. Rev. Lett. 79, 681 (1997).

    Article  Google Scholar 

  26. S. Torquato, J. Mech. Phys. Solids 45, 1421 (1997).

    Article  MathSciNet  Google Scholar 

  27. D. Hlushkou, H. Liasneuski, U. Tallarek, and S. Torquato, J. Appl. Phys. 118, 124901 (2015).

    Article  Google Scholar 

  28. S. Singh, H. Li, N. Chawla, Y. Jiao, unpublished research (2016).

  29. H. Li, N. Chawla, and Y. Jiao, Scr. Mater. 86, 48 (2014).

    Article  Google Scholar 

  30. H. Li, S. Kaira, J. Mertens, N. Chawla, and Y. Jiao, unpublished research (Arizona State University, Tempe, AZ, 2016).

  31. G.T. Herman and A. Kuba, Advances in Discrete Tomography and Its Applications (Springer: New York, 2008).

    Google Scholar 

  32. G.T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms, and Applications (Springer: New York, 2012).

    MATH  Google Scholar 

  33. A.P. Roberts, Phys. Rev. E 56, 3203 (1997).

    Article  Google Scholar 

  34. H. Okabe and M.J. Blunt, J. Pet. Sci. Eng. 46, 121 (2005).

    Article  Google Scholar 

  35. V. Sundararaghavan and N. Zabaras, Comp. Mater. Sci. 32, 223 (2005).

    Article  Google Scholar 

  36. Y. Jiao, F. Stillinger, and S. Torquato, Phys. Rev. E 76, 031110 (2007).

    Article  MathSciNet  Google Scholar 

  37. D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, and N. Hampson, Mater. Sci. Eng. A 494, 68 (2008).

    Article  Google Scholar 

  38. D.T. Fullwood, S.R. Niezgoda, and S.R. Kalidindi, Acta Mater. 56, 942 (2008).

    Article  Google Scholar 

  39. Y. Jiao, F. Stillinger, and S. Torquato, Phys. Rev. E 77, 031135 (2008).

    Article  MathSciNet  Google Scholar 

  40. Y. Jiao, F. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. USA 106, 17634 (2009).

    Article  Google Scholar 

  41. A. Hajizadeh, A. Safekordi, and F.A. Farhadpour, Adv. Water Resour. 34, 1256 (2011).

    Article  Google Scholar 

  42. M. Blacklock, H. Bale, M. Begley, and B. Cox, J. Mech. Phys. Solids 60, 451 (2012).

    Article  Google Scholar 

  43. R.G. Rinaldi, M. Blacklock, H. Bale, M.R. Begley, and B.N. Cox, J. Mech. Phys. Solids 60, 1561 (2012).

    Article  Google Scholar 

  44. P. Tahmasebi and M. Sahimi, Phys. Rev. Lett. 110, 078002 (2013).

    Article  Google Scholar 

  45. D. Chen, Q. Teng, X. He, Z. Xu, and Z. Li, Phys. Rev. E 89, 013305 (2014).

    Article  Google Scholar 

  46. K.M. Gerke and M.V. Karsanina, EPL 111, 56002 (2015).

    Article  Google Scholar 

  47. M.V. Karsanina, K.M. Gerke, E.B. Skvortsova, and D. Mallants, PLoS One 10, e0126515 (2015).

    Article  Google Scholar 

  48. X. Liu and V. Shapiro, Comp. Mater. Sci. 99, 177 (2015).

    Article  Google Scholar 

  49. R. Bostanabad, A.T. Bui, W. Xie, D.W. Apley, and W. Chen, Acta Mater. 103, 89 (2016).

    Article  Google Scholar 

  50. D.M. Turner and S.R. Kalidindi, Acta Mater. 102, 136 (2016).

    Article  Google Scholar 

  51. K.J. Batenburg and J. Sijbers, IEEE Trans. Image Process. 20, 2542 (2011).

    Article  MathSciNet  Google Scholar 

  52. W. van Aarle, K.J. Batenburg, and J. Sijbers, IEEE Trans. Image Process. 21, 4608 (2012).

    Article  MathSciNet  Google Scholar 

  53. K.J. Batenburg and J. Sijbers, Discrete Appl. Math. 157, 438 (2009).

    Article  MathSciNet  Google Scholar 

  54. E.Y. Sidky, C.-M. Kao, and X. Pan, J. X-Ray Sci. Technol. 14, 119 (2006).

    Google Scholar 

  55. E.Y. Sidky and X. Pan, Phys. Med. Biol. 53, 4777 (2008).

    Article  Google Scholar 

  56. N. Robert, F. Peyrin, and M.J. Yaffe, Med. Phys. 21, 1839 (1994).

    Article  Google Scholar 

  57. C.V. Alvino, A.J. Yezzi Jr., Proceedings of the IEEE CVPR, Vol. 1 (Washington, DC, June-July, 2004)

  58. S. Kirkpatrick and M.P. Vecchi, Science 220, 671 (1983).

    Article  MathSciNet  Google Scholar 

  59. E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines (England: Wiley, 1988).

    MATH  Google Scholar 

  60. C.-R. Hwang, Acta Appl. Math. 12, 108 (1988).

    Google Scholar 

  61. Y. Jiao, E. Padilla, and N. Chawla, Acta Mater. 61, 3370 (2013).

    Article  Google Scholar 

  62. S. Chen, H. Li, and Y. Jiao, Phys. Rev. E 92, 023301 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Materials Research at the National Science Foundation under Award No. DMR-1305119 (Program Manager: Dr. D. Farkas and Dr. D.W. Hess). Y. Jiao is also grateful to Arizona State University for generous start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhilesh Chawla or Yang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Singh, S., Shashank Kaira, C. et al. Microstructural Quantification and Property Prediction Using Limited X-ray Tomography Data. JOM 68, 2288–2295 (2016). https://doi.org/10.1007/s11837-016-2024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2024-9

Keywords

Navigation