Skip to main content
Log in

Multimineral nutritional supplements in a nano-CaO matrix

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≤ Ca:Fe ≤ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. L. Allen, B. De Benoist, O. Dary, and R.F. Hurrell: Guidelines on Food Fortification with Micronutrients (World Health Org., Geneva, 2006).

    Google Scholar 

  2. WHO: Worldwide Prevalence of Anaemia 1993-2005: WHO Global Database on Anaemia (World Health Org., Geneva, 2008).

    Google Scholar 

  3. M.B. Zimmermann and R.F. Hurrell: Nutritional iron deficiency. Lancet 370, 511 (2007).

    Article  CAS  Google Scholar 

  4. A.L.M. Heath and S.J. Fairweather-Tait: Clinical implications of changes in the modern diet: Iron intake, absorption and status. Best Pract. Res. Clin. Haematol. 15, 225 (2002).

    Article  CAS  Google Scholar 

  5. T.O. Scholl: Iron status during pregnancy: Setting the stage for mother and infant. Am. J. Clin. Nutr. 81, 1218S (2004).

    Article  Google Scholar 

  6. J.D. Haas and T.I.V. Brownlie: Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 131, 676S (2001).

    Article  CAS  Google Scholar 

  7. C. Hotz and K. H. Brown (eds): Assessment of the Risk of Zinc Deficiency in Populations and Options for Its Control. Food Nutr. Bull. 25, S91 (2004).

    Google Scholar 

  8. F.T. Wieringa, J. Berger, M.A. Dijkhuizen, A. Hidayat, N.X. Ninh, B. Utomo, E. Wasantwisut, and P. Winichagoon: Combined iron and zinc supplementation in infants improved iron and zinc status, but interactions reduced efficacy in a multicountry trial in southeast Asia. J. Nutr. 137, 466 (2007).

    Article  CAS  Google Scholar 

  9. N. De Jong, M.C. Ocke, H.A.C. Branderhorst, and R. Friele: Demographic and lifestyle characteristics of functional food consumers and dietary supplement users. Br. J. Nutr. 89, 273 (2003).

    Article  CAS  Google Scholar 

  10. P. Marques-Vidal, A. Pecoud, D. Hayoz, F. Paccaud, V. Mooser, G. Waeber, and P. Vollenweider: Prevalence and characteristics of vitamin or dietary supplement users in Lausanne, Switzerland: the CoLaus study. Eur. J. Clin. Nutr. 63, 273 (2009).

    Article  CAS  Google Scholar 

  11. R.L. Bailey, J.J. Gahche, C.V. Lentino, J.T. Dwyer, J.S. Engel, P.R. Thomas, J.M. Betz, C.T. Sempos, and M.F. Picciano: Dietary supplement use in the United States, 2003-2006. J. Nutr. 141, 261 (2011).

    Article  CAS  Google Scholar 

  12. G.P. Webb: Dietary Supplements and Functional Foods, 2nd ed. (Wiley-Blackwell, Chichester, 2011).

    Book  Google Scholar 

  13. S.J. Fairweather-Tait and B. Teucher: Iron and calcium bioavailability of fortified foods and dietary supplements. Nutr. Rev. 60, 360 (2002).

    Article  Google Scholar 

  14. European Parliament and the Council of the European Union: Directive 2002/46/EC of the European Parliament and the Council of 10 June 2002 (Official Journal of the European Communities, Luxemburg, 12.7.2002, L.183, 2002), p. 51–57.

    Google Scholar 

  15. A. Flynn and K. Cashman: Chapter 2: Calcium, in The Mineral Fortification of Foods, edited by R.F. Hurrell (Leatherhead Publishing, Surrey, UK, 1999), p. 18–53.

    Google Scholar 

  16. N. Harnby, M.F. Edwards, and A.W. Nienow: Mixing in the Process Industries (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  17. D.G. Wei, R. Dave, and R. Pfeffer: Mixing and characterization of nanosized powders: An assessment of different techniques. J. Nanopart. Res. 4, 21 (2002).

    Article  CAS  Google Scholar 

  18. D.D. Miller: Food nanotechnology: New leverage against iron deficiency. Nat. Nanotechnol. 5, 318 (2010).

    Article  CAS  Google Scholar 

  19. M.B. Zimmermann and F.M. Hilty: Nanocompounds of iron and zinc: Their potential in nutrition. Nanoscale 3, 2390 (2011).

    Article  CAS  Google Scholar 

  20. F.M. Hilty, M. Arnold, M. Hilbe, A. Teleki, J.T.N. Knijnenburg, F. Ehrensperger, R.F. Hurrell, S.E. Pratsinis, W. Langhans, and M.B. Zimmermann: Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotechnol. 5, 374 (2010).

    Article  CAS  Google Scholar 

  21. J.H. Swain, S.M. Newman, and J.R. Hunt: Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area. J. Nutr. 133, 3546–3552 (2003).

    Article  CAS  Google Scholar 

  22. I. Motzok, M.D. Pennell, M.I. Davies, and H.U. Ross: Effect of particle size on the biological availability of reduced iron. J. Assoc. Off. Anal. Chem. 58, 99 (1975).

    CAS  Google Scholar 

  23. F. Rohner, F.O. Ernst, M. Arnold, M. Hilbe, R. Biebinger, F. Ehrensperger, S.E. Pratsinis, W. Langhans, R.F. Hurrell, and M.B. Zimmermann: Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137, 614 (2007).

    Article  CAS  Google Scholar 

  24. F.M. Hilty, J.T.N. Knijnenburg, A. Teleki, F. Krumeich, R.F. Hurrell, S.E. Pratsinis, and M.B. Zimmermann: Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods. J. Food Sci. 76, N2 (2011).

    Article  CAS  Google Scholar 

  25. L. Madler, H.K. Kammler, R. Mueller, and S.E. Pratsinis: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369 (2002).

    Article  CAS  Google Scholar 

  26. R. Strobel and S.E. Pratsinis: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).

    Article  CAS  Google Scholar 

  27. J.J. Otten, J.P. Hellwig, and L.D. Mayers: Dietary Reference Intakes: The Essential Guide to Nutrient Requirements (Institute of Medicine of the National Academies, N.W. Washington DC, 2006).

    Google Scholar 

  28. F.M. Hilty, A. Teleki, F. Krumeich, R. Buchel, R.F. Hurrell, S.E. Pratsinis, and M.B. Zimmermann: Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology 20, 475101 (2009).

    Article  CAS  Google Scholar 

  29. M.J. Height, L. Madler, S.E. Pratsinis, and F. Krumeich: Nanorods of ZnO made by flame spray pyrolysis. Chem. Mater. 18, 572 (2006).

    Article  CAS  Google Scholar 

  30. A. Camenzind, R. Strobel, and S.E. Pratsinis: Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chem. Phys. Lett. 415, 193 (2005).

    Article  CAS  Google Scholar 

  31. R.S. Boynton: Chemistry and Technology of Lime and Limestone, 1st ed. (John Wiley & Sons, New York, 1966).

    Google Scholar 

  32. S.M. Shih, C.S. Ho, Y.S. Song, and J.P. Lin: Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind. Eng. Chem. Res. 38, 1316 (1999).

    Article  CAS  Google Scholar 

  33. R.M. Dheilly, J. Tudo, and M. Queneudec: Influence of climatic conditions on the carbonation of quicklime. J. Mater. Eng. Perform. 7, 789 (1998).

    Article  CAS  Google Scholar 

  34. A. Silaban and D.P. Harrison: High temperature capture of carbon dioxide: Characteristics of the reversible reaction between CaO(s) and CO2(g). Chem. Eng. Commun. 137, 177 (1995).

    Article  CAS  Google Scholar 

  35. H. Lu, P.G. Smirniotis, F.O. Ernst, and S.E. Pratsinis: Nanostructured Ca-based sorbents with high CO2 uptake efficiency. Chem. Eng. Sci. 64, 1936 (2009).

    Article  CAS  Google Scholar 

  36. M. Huber, W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich, and A. Baiker: Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 648–650 (2005).

    Google Scholar 

  37. T. Rudin, K. Wegner, and S.E. Pratsinis: Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. J. Nanopart. Res. 13, 2715 (2011).

    Article  CAS  Google Scholar 

  38. B. Bergman: Solid-state reactions between CaO powder and Fe2O3. J. Am. Ceram. Soc. 69, 608 (1986).

    Article  CAS  Google Scholar 

  39. A.V. Radha, T.Z. Forbes, C.E. Killian, P. Gilbert, and A. Navrotsky: Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 107, 16438 (2010).

    Article  CAS  Google Scholar 

  40. D.K. Fisler, J.D. Gale, and R.T. Cygan: A shell model for the simulation of rhombohedral carbonate minerals and their point defects. Am. Mineral. 85, 217 (2000).

    Article  CAS  Google Scholar 

  41. W.M. Haynes: CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press/Taylor and Francis, Boca Raton, FL, 2012).

    Google Scholar 

  42. C.H. Yoder and N.J. Flora: Geochemical applications of the simple salt approximation to the lattice energies of complex materials. Am. Mineral. 90, 488 (2005).

    Article  CAS  Google Scholar 

  43. L. Madler, W.J. Stark, and S.E. Pratsinis: Rapid synthesis of stable ZnO quantum dots. J. Appl. Phys. 92, 6537 (2002).

    Article  CAS  Google Scholar 

  44. S. Vemury and S.E. Pratsinis: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).

    Article  CAS  Google Scholar 

  45. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).

    Article  Google Scholar 

  46. T. Tani, L. Madler, and S.E. Pratsinis: Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. J. Mater. Sci. 37, 4627 (2002).

    Article  CAS  Google Scholar 

  47. M. Ghosh and A.K. Raychaudhuri: Structure and optical properties of Cd-substituted ZnO (Zn1-xCdxO) nanostructures synthesized by the high-pressure solution route. Nanotechnology 18, 115618 (2007).

    Article  CAS  Google Scholar 

  48. M.K. Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo: Vapor synthesis of Al-doped titania powders. J. Mater. Res. 9, 1241 (1994).

    Article  CAS  Google Scholar 

  49. R. Strobel and S.E. Pratsinis: Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Phys. Chem. Chem. Phys. 13, 9246 (2011).

    Article  CAS  Google Scholar 

  50. R.C. Doman, J.B. Barr, R.N. McNally, and A.M. Alper: Phase equilibria in the system CaO-MgO. J. Am. Ceram. Soc. 46, 313 (1963).

    Article  CAS  Google Scholar 

  51. R.J. Reeder, G.M. Lamble, and P.A. Northrup: XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements. Am. Mineral. 84, 1049 (1999).

    Article  CAS  Google Scholar 

  52. M.E. Shils, J.A. Olson, M. Shike, and A.C. Ross: Modern Nutrition in Health and Disease, 10th ed. (Lippincott Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  53. S.R. Lynch: The effect of calcium on iron absorption. Nutr. Res. Rev. 13, 141 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ETH Research Grant ETH-06 10-1. (S)TEM investigations were carried out at the Electron Microscopy ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris E. Pratsinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knijnenburg, J.T., Hilty, F.M., Krumeich, F. et al. Multimineral nutritional supplements in a nano-CaO matrix. Journal of Materials Research 28, 1129–1138 (2013). https://doi.org/10.1557/jmr.2013.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.63

Navigation