Skip to main content
Log in

Kinetically driven selective growth of InAs quantum dots on GaAs

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We show that, by changing and tuning the direction of the As flux on a rippled substrate, at temperatures higher than 530 °C and high As/In flux ratio, a selective growth of InAs dots can be obtained on GaAs. This is an undisclosed effect related to the Arsenic flux in the molecular beam epitaxial growth of InAs quantum dots (QDs) on GaAs(001). This effect cannot be explained by a shadowing effect, due to the gentle slopes of the mounds (1–3°), and reveals instead that As plays a fundamental role at these growth conditions. We have developed a kinetic model, which takes into account the coupling between cations and anions, and found that the very small surface gradient in the anion flux, due to the oblique evaporation on the mounded surface, is responsible for a massive drain of cations toward the surface anion-rich areas, thus generating the selective growth of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. P.M. Petroff: Semiconductor self-assembled quantum dots: Present status and future trends. Adv. Mater. 23, 2372 (2011).

    Article  CAS  Google Scholar 

  2. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart: Ultrabright source of entangled photon pairs. Nature 466, 217 (2010).

    Article  CAS  Google Scholar 

  3. R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J.D. Plumhof, J. Van den Brink, A. Rastelli, and O.G. Schmidt: Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    Article  CAS  Google Scholar 

  4. S. Kiravittaya, A. Rastelli, and O.G. Schmidt: Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502 (2009).

    Article  Google Scholar 

  5. B. Yang, F. Liu, and M.G. Lagally: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004).

    Article  Google Scholar 

  6. F. Patella, F. Arciprete, E. Placidi, M. Fanfoni, A. Balzarotti, A. Vinattieri, L. Cavigli, M. Abbarchi, M. Gurioli, and L. Lunghi: Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach. Appl. Phys. Lett. 93, 231904 (2009).

    Article  Google Scholar 

  7. J. Tersoff, C. Teichert, and M.G. Lagally: Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675 (1996).

    Article  CAS  Google Scholar 

  8. Z.M. Wang, K. Holmes, Y.I. Mazur, and G.J. Salamo: Fabrication of (In,Ga)As quantum-dot chains on GaAs(100). Appl. Phys. Lett. 84, 1931 (2004).

    Article  CAS  Google Scholar 

  9. H. Heidemeyer, U. Denker, C. Muller, and O.G. Schmidt: Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. Phys. Rev. Lett. 91, 196103 (2003).

    Article  CAS  Google Scholar 

  10. C. Schneider, A. Huggenberger, T. Sünner, T. Heindel, M. Strauß, S. Göpfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Höfling, and A Forchel: Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009).

    Article  CAS  Google Scholar 

  11. R. Leon, T.J. Senden, Y. Kim, C. Jagadish, and A. Clark: Nucleation transitions for InGaAs islands on vicinal (100) GaAs. Phys. Rev. Lett. 78, 4942 (1997).

    Article  CAS  Google Scholar 

  12. E. Placidi, F. Arciprete, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti: Step erosion during nucleation of InAs/GaAs(001) quantum dots. Appl. Phys. Lett. 86, 241913 (2005).

    Article  Google Scholar 

  13. J.N. Aqua, I. Berbezier, L. Favre, T. Frisch, and A. Ronda: Growth and self-organization of SiGe nanostructures. Phys. Rep. 522, 59 (2012).

    Article  Google Scholar 

  14. E. Placidi, F. Arciprete, M. Fanfoni, F. Patella, E. Orsini, and A. Balzarotti: InAs/GaAs(001) epitaxy: Kinetic effects in the two-dimensional to three-dimensional transition. J. Phys. Condens. Matter 19, 225006 (2007).

    Article  Google Scholar 

  15. M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijono, L.M. Sander, B.G. Orr: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116 (1994).

    Article  CAS  Google Scholar 

  16. F. Patella, F. Arciprete, E. Placidi, S. Nufris, M. Fanfoni, A. Sgarlata, D. Schiumarini, and A. Balzarotti: Morphological instabilities of the InAs/GaAs(001) interface and their effect on the self-assembling of InAs quantum-dot arrays. Appl. Phys. Lett. 81, 2270 (2002).

    Article  CAS  Google Scholar 

  17. A. Ohtake and M. Ozeki: In situ observation of surface processes in InAs/GaAs(001) heteroepitaxy: The role of As on the growth mode. Appl. Phys. Lett. 78, 431 (2001).

    Article  CAS  Google Scholar 

  18. C. Heyn: Stability of InAs quantum dots. Phys. Rev. B 66, 075307 (2002).

    Article  Google Scholar 

  19. F. Arciprete, E. Placidi, R. Magri, M. Fanfoni, A. Balzarotti, and F. Patella: The unexpected role of arsenic in driving the selective growth of InAs quantum dots on GaAs. ACS Nano 7, 3868 (2013).

    Article  CAS  Google Scholar 

  20. M.K. Yakes, C.D. Cress, J.G. Tischler, and A.S. Bracker: Three-dimensional control of self-assembled quantum dot configurations. ACS Nano 4, 3877 (2010).

    Article  CAS  Google Scholar 

  21. F. Patella, F. Arciprete, M. Fanfoni, A. Balzarotti, and E. Placidi: Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001). Appl. Phys. Lett. 88, 161903 (2006).

    Article  Google Scholar 

  22. F. Patella, S. Nufris, F. Arciprete, M. Fanfoni, E. Placidi, A. Sgarlata, and A. Balzarotti: Tracing the two- to three-dimensional transition in the InAs/GaAs(001) heteroepitaxial growth. Phys. Rev. B 67, 205308 (2003).

    Article  Google Scholar 

  23. F. Patella, A. Sgarlata, F. Arciprete, S. Nufris, P.D. Szkutnik, E. Placidi, M. Fanfoni, N. Motta, and A. Balzarotti: Self-assembly of InAs and Si/Ge quantum dots on structured surfaces. J. Phys. Condens. Matter. 16, S1503 (2004).

    Article  CAS  Google Scholar 

  24. F. Patella, F. Arciprete, M. Fanfoni, V. Sessi, A. Balzarotti, and E. Placidi: Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001). Appl. Phys. Lett. 87, 252101 (2005).

    Article  Google Scholar 

  25. P. Kratzer and M. Scheffler: Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As2 molecules on GaAs surfaces. Phys. Rev. Lett. 82, 4886 (1999).

    Article  Google Scholar 

  26. M. Rosini, P. Kratzer, and R. Magri: In adatom diffusion on InxGa1-xAs/GaAs(001): Effects of strain, reconstruction and composition. J. Phys. Condens. Matter 21, 355007 (2009).

    Article  CAS  Google Scholar 

  27. M. Rosini, R. Magri, and P. Kratzer: Adsorption of indium on an InAs wetting layer deposited on the GaAs(001) surface. Phys. Rev. B 77, 165323 (2008).

    Article  Google Scholar 

  28. E. Placidi, A. Dalla Pia, and F. Arciprete: Annealing effects on faceting of InAs/GaAs(001). Appl. Phys. Lett. 94, 021901 (2009).

    Article  Google Scholar 

  29. F. Arciprete, E. Placidi, M. Fanfoni, F. Patella, A. Dalla Pia, and A. Balzarotti: Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001). Phys. Rev. B 81, 165306 (2010).

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the Cariplo foundation for financial support through the project number 2010-0525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Arciprete.

Supplementary Material

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2013.340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arciprete, F., Placidi, E., Magri, R. et al. Kinetically driven selective growth of InAs quantum dots on GaAs. Journal of Materials Research 28, 3201–3209 (2013). https://doi.org/10.1557/jmr.2013.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.340

Navigation