Skip to main content
Log in

Variation in the nanoindentation hardness of platinum

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pure platinum was probed with a nanoindenter fitted with a Berkovich tip to various depths. The indent pattern was made on the as-polished specimen prior to heat treating, after heat treating at 500 °C for 30 min, and again after further heat treating at 1000 °C for 30 min. The variability in the measured hardness decreased as the indentation depth increased from 50 to 300 nm. When the sampled was annealed, the hardness variation was also greater. Increasing hardness variation with decreasing dislocation density and sampling volume indicates that dislocation density plays a critical role in the observed variation, beyond solely instrumentation uncertainty, and supports a defect-based explanation for the stochastic behavior. It appears that the stochastic behavior occurs when multiple dislocations are present in the sampled volume rather than sampling only a single dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. D.M. Tanner, T.B. Parson, A.D. Corwin, J.A. Walraven, J.W. Wittwer, B.L. Boyce, and S.R. Winzer: Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806 (2007).

    Article  CAS  Google Scholar 

  2. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  3. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  4. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).

    Article  Google Scholar 

  5. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2002).

    Book  Google Scholar 

  6. S.N. Dub, Y.Y. Lim, and M.M Chaudhri: Nanohardness of high purity Cu (111) single crystals: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107, 043510 (2010).

    Article  CAS  Google Scholar 

  7. T.S. Srivatsan, B.G. Ravi, A.S. Naruka, L Riester, S. Yoo, and T.S. Sudarshan: A study of microstructure and hardness of bulk copper sample obtained by consolidating nanocrystalline powders using plasma pressure compaction. Mater. Sci. Eng., A 311, 22 (2001).

    Article  Google Scholar 

  8. Y. Chen and I.W. Hunter: Stochastic system identification of skin properties: Linear and wiener static nonlinear methods. Ann. Biomed. Eng. 40, 2242 (2012).

    Google Scholar 

  9. A.L. Romasco, L.H. Friedman, L. Fang, R.A. Meirom, T.E. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, and C.L. Muhlstein: Deformation behavior of nanograined platinum films. Thin Solid Films 518, 3866 (2010).

    Article  CAS  Google Scholar 

  10. H. Lee, R.A. Coutu, S. Mall, and K.D. Leedy: Characterization of metal and metal alloy films as contact materials in MEMS switches. J. Micromech. Microeng. 16, 557 (2006).

    Article  CAS  Google Scholar 

  11. D.T. Read, R.R. Keller, N. Barbosa, and N. Geiss: Nanoindentation round robin on thin film copper on silicon. Metall. Mater. Trans. A 38, 2242 (2007).

    Article  CAS  Google Scholar 

  12. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14(6), 2296 (1999).

    Article  CAS  Google Scholar 

  13. X.D. Hou, A.J. Bushby, and N.M. Jennett: Direct measurement of surface shape for validation of indentation deformation and plasticity length-scale effects: A comparison of methods. Meas. Sci. Technol. 21, 115015 (2010).

    Article  CAS  Google Scholar 

  14. M.S. Bobji, S.K. Biswas, and J.B. Pethica: Effect of roughness on the measurement of nanohardness: A computer simulation study. Appl. Phys. Lett. 71(8), 1059 (1997).

    Article  CAS  Google Scholar 

  15. W.W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson: Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations. J. Mater. Res. 13(2), 421 (1998).

    Article  CAS  Google Scholar 

  16. A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200(14–15), 4153 (2005).

    Google Scholar 

  17. A.A. Zbib and D.F. Bahr: Dislocation nucleation and source activation during nanoindentation yield points. Metall. Mater. Trans. A 37, 2249 (2007).

    Article  CAS  Google Scholar 

  18. P. Trtik, B. Munch, and P. Lura: A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem. Concr. Compos. 31, 705 (2009).

    Article  CAS  Google Scholar 

  19. W.M. Mook, C. Niederberger, M. Bechelany, L. Philippe, and J. Michler: Compression of freestanding gold nanostructures: From stochastic yield to predictable flow. Nanotechnology 21, 055701 (2010).

    Article  CAS  Google Scholar 

  20. K.S. Ng and A.H.W. Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).

    Article  CAS  Google Scholar 

  21. J.R. Morris, H. Bei, G.M. Pharr, and E.P. George: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2001).

    Article  CAS  Google Scholar 

  22. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617–621 (2005).

    Article  CAS  Google Scholar 

  23. M.M. Biener, J. Biener, A.M. Hodge, and A.V. Hamza: Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B. 76, 165422 (2007).

    Article  CAS  Google Scholar 

  24. I. Salehinia and D.F. Bahr: The impact of a variety of point defects on the inception of plastic deformation in dislocation-free metals. Scr. Mater. 66, 339 (2012).

    Article  CAS  Google Scholar 

  25. I. Salehinia, V. Perez, and D.F. Bahr: Effect of vacancies on incipient plasticity during contact loading. Philos. Mag. 92(5), 550 (2012).

    Article  CAS  Google Scholar 

  26. I. Salehinia and S.N. Medyanik: Effects of vacancies on the onset of plasticity in metals: An atomistic simulation study. Metall. Mater. Trans. A 42, 3868 (2011).

    Article  CAS  Google Scholar 

  27. A. Barnoush: Correlation between dislocation density and nanomechanical response during nanoindentation. Acta Mater. 60, 1268 (2012).

    Article  CAS  Google Scholar 

  28. B. Zhang, W. Wang, and G.P. Zhang: Depth dependent hardness variation in Ni–P amorphous film under nanoindentation. Mater. Sci. Technol. 22(6), 734 (2006).

    Article  CAS  Google Scholar 

  29. G. Farges and D. Degout: Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials. Thin Solid Films 181, 365 (1989).

    Article  Google Scholar 

  30. K. Durst, O. Franke, A. Böhner, and M. Göken: Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007).

    Article  CAS  Google Scholar 

  31. G.M. Pharr, E.G. Herbert, and Y. Gao: The indentation size effect: Critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).

    Article  CAS  Google Scholar 

  32. A.A. Elmustafa, J.A. Eastman, M.N. Rittner, J.R. Weertman, and D.S. Stone: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000).

    Article  CAS  Google Scholar 

  33. Y.Y. Lim and M.M. Chaudhri: The influence of grain size on the indentation hardness of high-purity copper and aluminium. Philos. Mag. 82(10), 2071 (2002).

    Article  CAS  Google Scholar 

  34. International Standard ISO 14577-2: Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters–Part 2: Verification and Calibration of Testing Machines, 1st ed., ISO, 2002.

    Google Scholar 

  35. B.D. Craig and D.S. Anderson: Handbook of Corrosion Data, 2nd ed. (A.S.M. International, Materials Park, OH, 2002), pp. 76–77.

    Google Scholar 

  36. A.R. Powell: Behavior of the platinum metals at high temperatures. Platinum Met. Rev. 2(3), 95 (1958).

    Google Scholar 

  37. International Standard ISO 14577-1: Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters–Part 1: Test Method, 1st ed., ISO, 2002.

    Google Scholar 

  38. D.F. Bahr and D.J. Morris: Nanoindentation: Localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, edited by W.N. Sharpe (Springer, New York, 2008), pp. 389–408.

    Chapter  Google Scholar 

  39. S. Harvey, H. Huang, S. Venkataraman, and W.W. Gerberich: Microscopy and microindentation mechanics of single crystal Fe-3 wt.% Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8(6), 1291 (1993).

    Article  CAS  Google Scholar 

  40. M.J. Cordill, N.R. Moody, and W.W. Gerberich: Effects of dynamic indentation on the mechanical response of materials. J. Mater. Res. 23(6), 1604 (2008).

    Article  CAS  Google Scholar 

  41. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(3), 653 (2009).

    Article  CAS  Google Scholar 

  42. M.J. Cordill, M.S. Lund, J. Parker, C. Leighton, A.K. Nair, D. Farkas, N.R. Moody, and W.W. Gerberich: The nano-jackhammer effect in probing near-surface mechanical properties. Int. J. Plast. 25, 2045 (2009).

    Article  CAS  Google Scholar 

  43. K.W. Sui and A.H.W. Ngan: The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag. 93(5), 449 (2013).

    Article  CAS  Google Scholar 

  44. G. Van Belle and D.C. Martin: Sample size as a function of coefficient of variation and ratio of means. The American Statistician 47(3), 165 (1993).

    Google Scholar 

  45. W.D. Nix and H. GaoIndentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1997).

    Article  Google Scholar 

  46. W.W. Gerberich, N.I. Tyamiak, J.C. Grunlan, M.F. Horstemeyer, and M.I. Baskes: Interpretations of indentation size effects. J. Appl. Mech. 69, 433 (2002).

    Article  CAS  Google Scholar 

  47. K. Danas, V.S. Deshpande, and N.A. Fleck: Size effects in the conical indentation of an elasto-plastic solid. J. Mech. Phys. Solids 60, 1605 (2012).

    Article  Google Scholar 

  48. L. Ma, D.J. Morris, S.L. Jennerjohn, D.F. Bahr, and L. Levine: Finite element analysis and experimental investigation of the Hertzian assumption on the characterization of initial plastic yield. J. Mater. Res. 24, 1059–1068 (2009).

    Article  CAS  Google Scholar 

  49. J.J. Voost and W.D. Nix: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 76(5), 1045 (1993).

    Google Scholar 

  50. V. Bhakhri and R.J. Klassen: The depth dependence of the indentation creep of polycrystalline gold at 300 K. Scr. Mater. 55, 395 (2006).

    Article  CAS  Google Scholar 

  51. S.A. Syed Asif and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. 76(6), 1105 (1997).

    Article  CAS  Google Scholar 

  52. D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, and M.J. Mills: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).

    Article  CAS  Google Scholar 

  53. A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, M. Kunz, A.M. Minor, and C.P. Frick: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng., A 559, 147 (2013).

    Article  CAS  Google Scholar 

  54. S. Shao, N. Abdolrahim, D.F. Bahr, G. Lin, and H.M. Zbib: Stochastic effects in plasticity in small volumes. Int. J. Plast. (2013, accepted). DOI: 10.1016/j.ijplas.2013.09.005

    Google Scholar 

  55. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect of strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).

    Article  CAS  Google Scholar 

  56. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Bahr.

Additional information

Address all correspondence to this author.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maughan, M.R., Zbib, H.M. & Bahr, D.F. Variation in the nanoindentation hardness of platinum. Journal of Materials Research 28, 2819–2828 (2013). https://doi.org/10.1557/jmr.2013.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.285

Navigation