Skip to main content
Log in

Development of High Temperature Nanoindentation Methodology and its Application in the Nanoindentation of Polycrystalline Tungsten in Vacuum to 950 °C

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The capability for high temperature nanoindentation measurements to 950 °C in high vacuum has been demonstrated on polycrystalline tungsten, a material of great importance for nuclear fusion and spallation applications and as a potential high temperature nanomechanics reference sample. It was possible to produce measurements with minimal thermal drift (typically ~0.05 nm/s at 750–950 °C) and no visible oxidative damage. The temperature dependence of the hardness, elastic modulus, plasticity index, creep, creep strain, and creep recovery were investigated over the temperature range, testing at 25, 750, 800, 850, 900 and 950 °C. The nanoindentation hardness measurements were found to be consistent with previous determinations by hot microhardness. Above 800 °C the hardness changes relatively little but more pronounced time-dependent deformation and plasticity were observed from 850 °C. Plasticity index, indentation creep and creep recovery all increase with temperature. The importance of increased time-dependent deformation and pile-up on the accuracy of the elastic modulus measurements are discussed. Elastic modulus measurements determined from elastic analysis of the unloading curves at 750–800 °C are close to literature bulk values (to within ~11 %). The high temperature modulus measurements deviate more from bulk values determined taking account of the high temperature properties of the indenter material at the point (850 °C) at which more significant time-dependent deformation is observed. This is thought to be due to the dual influence of increased time-dependency and pile-up that are not being accounted for in the elastic unloading analysis. Accounting for this time-dependency by applying a viscoelastic compliance correction developed by G. Feng and A.H.W. Ngan (J. Mater. Res. (2002) 17:660–668) greatly reduces the values of the elastic modulus, so they are agree to within 6 % of literature values at 950 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wheeler JM, Armstrong DEJ, Heinz W, Schwaiger R (2015) High temperature nanoindentation: the state of the art and future challenges. Curr Opin Solid State Mater Sci 19:354–366

    Article  Google Scholar 

  2. Beake BD, Fox-Rabinovich GS (2014) Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surf Coat Technol 255:102–111

    Article  Google Scholar 

  3. Korte SK, Stearn RJ, Wheeler JM, Clegg WJ (2012) High temperature microcompression and nanoindentation in vacuum. J Mater Res 27:167–176

    Article  Google Scholar 

  4. Wheeler JM, Michler J (2013) Invited article: indenter materials for high temperature nanoindentation. Rev Sci Instrum 84:101301

    Article  Google Scholar 

  5. Vandeperre LJ, Giuliani F, Lloyd SJ, Clegg WJ (2007) The hardness of silicon and germanium. Acta Mater 55:6307–6315

    Article  Google Scholar 

  6. Domnich V, Aratyn Y, Kriven WM, Gogotsi Y (2008) Temperature dependence of silicon hardness: experimental evidence of phase transformation. Rev Adv Mater Sci 17:33–41

    Google Scholar 

  7. Nieh TG, Iwamoto C, Ikuhara Y, Lee KW, Chung YW (2004) Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12:1183–1189

    Article  Google Scholar 

  8. Korte SK, Clegg WJ (2009) Micropillar compression of ceramics at elevated temperature. Scr Mater 60:807–810

    Article  Google Scholar 

  9. Bhakhri V, Klassen RJ (2006) Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part I The deformation of three aluminium alloys at 473 K to 833 K. J Mater Sci 41:2259–2270

    Article  Google Scholar 

  10. Korte SK, Banard JS, Stearn RJ, Clegg WJ (2011) Deformation of silicon, insights from microcompression testing at 25–500 °C. Int J Plast 27:1853–1866

    Article  MATH  Google Scholar 

  11. Trenkle JC, Packard CE, Schuh CA (2010) Hot nanoindentation in inert environments. Rev Sci Instrum 81:073901

    Article  Google Scholar 

  12. Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179–2186

    Article  Google Scholar 

  13. Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindentation - the importance of isothermal contact. Philos Mag 91:1221–1244

    Article  Google Scholar 

  14. Pearson SR, Shipway PH, Abere JO, Hewitt RAA (2013) The effect of temperature on wear and friction of a high strength steel in fretting. Wear 303:622

    Article  Google Scholar 

  15. Huang Z, Harris AJ, Maloy SA, Hosemann P (2014) Nanoindentation creep study on an ion beam irradiated ODS alloy. J Nucl Mater 451:162–167

    Article  Google Scholar 

  16. Harris AJ, Beake BD, Armstrong DEJ (2015) Extreme nanomechanics: vacuum nanoindentation and nanotribology to 950 °C. Tribology 9:174–180

    Google Scholar 

  17. Fox-Rabinovich GS, Beake BD, Veldhuis SC, Endrino JL, Parkinson R, Shuster LS, Migranov MS (2006) Impact of mechanical properties measured at room and elevated temperatures on wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf Coat Technol 200:5738–5742

    Article  Google Scholar 

  18. Beake BD, Fox-Rabinovich GS, Veldhuis SC, Goodes SR (2009) Coating optimisation for high-speed machining with advanced nanomechanical test methods. Surf Coat Technol 203:1919–1925

    Article  Google Scholar 

  19. Fox-Rabinovich GS, Endrino JL, Agguire MH, Beake BD, Veldhuis SC et al (2012) Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions. J Appl Phys 111:064306

    Article  Google Scholar 

  20. Beake BD, Fox-Rabinovich GS, Losset Y, Yamamoto K et al (2012) Why can TiAlCrSiYN-based adaptive coatings deliver exceptional performance under extreme frictional conditions? Faraday Discuss 156:267–278

    Article  Google Scholar 

  21. Rebelo de Figueiredo M, Abad MD, Harris AJ, Czettl C, Mitterer C, Hosemann P (2015) Nanoindentation of chemical-vapor deposited Al2O3 hard coatings at elevated temperatures. Thin Solid Films 578:20–24

    Article  Google Scholar 

  22. Gibson JSK-L, Roberts SG, Armstrong DEJ (2015) High-temperature indentation of helium-implanted tungsten. Mater Sci Eng A 625:380–384

    Article  Google Scholar 

  23. Sawant A, Tin S (2008) High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy. Scr Mater 58:275–278

    Article  Google Scholar 

  24. Sawant A, Tin S, Zhao J-C (2008) High temperature nanoindentation of Ni-base superalloys. In: Reed RC, Green KA, Caron P, Gabb TP, Fahrmann EG, Huron ES, Woodard SA (eds) Superalloys 2008. TMS, 863–871

  25. Milhans J, Li DS, Khaleel M, Sun MX, Al-Haik MS, Harris AJ, Garmestani H (2011) Mechanical properties of solid oxide fuel cell glass-ceramic seal at high Temperatures. J Power Sources 196:5599–5603

    Article  Google Scholar 

  26. Armstrong DEJ, Tarleton E (2015) Bend testing of silicon microcantilevers from 21 °C to 770 °C. JOM 67:2914–2920

    Article  Google Scholar 

  27. Everitt NM (1992) Indentation creep on single crystal magnesium oxide. J Hard Mater 3:269–284

    Google Scholar 

  28. ISO 14577: Metallic materials—instrumented indentation test for hardness and materials parameters, parts 1–4

  29. Determination of the hardness and modulus of thin films and coatings (INDICOAT), Jennett NM et al., NPL Report MATC(A) Mat 24, 2001, ISSN 1473–2734. EU-funded project SMT4-CT98-2249

  30. Jennett NM, Bushby AJ (2002) Adaptive protocol for robust estimates of coatings properties by nanoindentation. Mater Res Soc Symp Proc 695:73–78

    Google Scholar 

  31. Chudoba T, Richter F (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198

    Article  Google Scholar 

  32. Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17:660–668

    Article  Google Scholar 

  33. Chen J, Shen Y, Liu W, Beake BD, Shi X, Wang Z, Zhang Y, Gu X (2016) Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper. Mater Sci Eng A 656:216–221

    Article  Google Scholar 

  34. Lofaj F, Kaganovskii YS (1995) Kinetics of WC-Co oxidation accompanied by swelling. J Mater Sci 30:1811–1817

    Article  Google Scholar 

  35. Kermouche G, Barthel E, Vamdembroucq D, Dubujet P (2008) Mechanical modelling of indentation induced densification in amorphous silica. Acta Mater 56:3222–3228

    Article  Google Scholar 

  36. Chudoba T, Jennett NM (2008) Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J Phys D Appl Phys 41:215407

    Article  Google Scholar 

  37. Michel MD, Serbena FC, Lepienski CM (2006) Effect of temperature on hardness and indentation cracking of fused silica. J Non-Cryst Solids 352:3550–3555

    Article  Google Scholar 

  38. Gross TM, Tomozawa M (2008) Crack-free high load Vickers indentation of silica glass. J Non-Cryst Solids 354:5567–5569

    Article  Google Scholar 

  39. Morris DJ, Myers SG, Cook RF (2004) Sharp probes of varying acuity: instrumented indentation and fracture behaviour. J Mater Res 19:165–175

    Article  Google Scholar 

  40. Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of the element, alloys and chemical compounds. Kluwer, New York

    Book  Google Scholar 

  41. Lozinskii MG (1961) High temperature metallography. Pergamon Press, Oxford

    Google Scholar 

  42. Milman YV (2008) Plasticity characteristic obtained by indentation. J Phys D Appl Phys 41:074013 (9pp)

    Article  Google Scholar 

  43. Milman YV, Galanov BA, Chugunova SI (1993) Plasticity characteristic obtained through hardness measurement. Acta Metall Mater 41:2523–2532

    Article  Google Scholar 

  44. Milman YV (1985) Structural aspects of warm and cold plastic deformation of crystalline materials. Metal Sci Heat Treat 27:397–402 (translated from Metallovedenie i Termicheskaya Obrabotka Metallov 6 (1985) 2–6)

    Article  Google Scholar 

  45. Savoini B, Martinez J, Munoz A, Monge MA, Pareja R (2013) Microstructure and temperature dependence of the microhardness of W-4 V-1La2O3 and W-Ti-1La2O3. J Nucl Mater 442:S229–S232

    Article  Google Scholar 

  46. Simmons G, Wang H (1971) Single crystal constants and calculated aggregate properties: a handbook, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  47. Tanno T, Fukuda M, Nogami S, Hasegawa A (2011) Microstructure development in neutron irradiated tungsten alloys. Mater Trans 52:1447–1451

    Article  Google Scholar 

  48. Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73:614–616

    Article  Google Scholar 

  49. Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R 44:91–149

    Article  Google Scholar 

  50. Tang F, Zhang LC (2011) On the reliability of nanoindentation on Si wafer at elevated temperatures. Adv Mater Res 325:684–689

    Article  Google Scholar 

  51. Beake BD (2006) Modelling indentation creep of polymers: a phenomenological approach. J Phys D Appl Phys 39:4478–4485

    Article  Google Scholar 

  52. Chen J, Beake BD, Bell GA, Tait Y, Gao F (2015) Probing polymer chain constraint and synergistic effects in nylon 6-clay nanocomposites and nylon 6-silica flake sub-micro composites with nanomechanics. Nanocomposites 1:185–194

    Article  Google Scholar 

  53. Beake BD, Harris AJ, Liskiewicz TW (2015) Advanced nanomechanical techniques, chapter 1. In: Ranganathan N (ed) Materials characterization: modern methods and applications. Pan Stanford Press, Singapore, pp 1–90

    Google Scholar 

  54. Aguado F, Baonza VG (2006) Prediction of bulk modulus at high temperatures from longitudinal phonon frequencies: application to diamond, c-BN and 3C-SiC. Phys Rev B 73:024111

    Article  Google Scholar 

  55. Davies MI (2013) High temperature nanoindentation characterisation of P91 and P92 Steel. PhD Thesis, University of Nottingham

  56. Oliver WC, Pharr GM (1992) An improved technique for measuring hardness and elastic modulus through load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  57. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  Google Scholar 

  58. Lee YH, Hahn JH, Nahm SH, Jang JI, Kwon D (2008) Investigations on indentation size effects using a pile-up corrected hardness. J Phys D Appl Phys 41:074027 (5 pp)

    Article  Google Scholar 

  59. Lee YH, Baek U, Kim YI, Nahm SH (2007) On the measurement of pile-up corrected hardness based on the early Hertzian loading analysis. Mater Lett 61:4039–4042

    Article  Google Scholar 

  60. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41:2855–2865

    Article  Google Scholar 

  61. Bolshakov A, Pharr GM (1998) Influence of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058

    Article  Google Scholar 

  62. Gale JD, Achuthan A (2014) The effect of work-hardening and pile-up on nanoindentation measurements. J Mater Sci 49:5066–5075

    Article  Google Scholar 

  63. Beake BD, Goodes SR, Smith JF, Fox-Rabinovich GS, Veldhuis SC (2010) Using nanomechanics to optimise coatings for cutting tools. In Zhang S (ed) Handbook of nanostructured thin films and coatings, mechanical properties. CRC Press, pp 205–244

  64. Beake BD, Liskiewicz TW, Vishnyakov VM, Davies MI (2015) Development of DLC coating architectures for demanding functional surface applications through nano- and micro-mechanical testing. Surf Coat Technol 284:334–343

    Article  Google Scholar 

  65. Choi Y, Lee HS, Kwon D (2004) Analysis of sharp-tip indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects. J Mater Res 19:3307–3315

    Article  Google Scholar 

  66. Park C-P, Lee J-L, Kang S-K, Kim Y-C, Woo K-S, Jeon S-W, Kwon D (2016) Evaluation of high-temperature Vickers hardness using instrumented indentation system. Mater Sci Eng A 650:15–19

    Article  Google Scholar 

Download references

Acknowledgments

DEJA acknowledges The Royal Academy of Engineering for a Research Fellowship at the University of Oxford and the Culham Centre for Fusion Energy for funding via a Research Fellowship at St Edmund Hall, Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Beake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, A.J., Beake, B.D., Armstrong, D.E.J. et al. Development of High Temperature Nanoindentation Methodology and its Application in the Nanoindentation of Polycrystalline Tungsten in Vacuum to 950 °C. Exp Mech 57, 1115–1126 (2017). https://doi.org/10.1007/s11340-016-0209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0209-3

Keywords

Navigation