Skip to main content
Log in

Mechanical and structural characterization of nonsintered and sintered steel wools by x-ray tomography: Description of the techniques and validation on virtual materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Properties of entangled materials, made of fibers, depend on the number and the nature of contacts between fibers and fibers orientation. Nonsintered and sintered steel wools have been characterized by x-ray tomography to extract structural information such as fibers orientation and number of contacts before and during compression. Image analysis techniques were developed on tomography images and validated on virtual materials, generated and deformed by numerical simulation based on molecular dynamic equations. The structural parameters measured during the structural characterization were finally used to link the structure of the studied material with the measured mechanical properties. To do this link, an analytical model usually used for this kind of material was modified to describe the evolution of mechanical properties in compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE I.

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide (Butterworth–Heinemann, Boston, MA, 2000).

    Google Scholar 

  2. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  3. J.P. Masse, L. Salvo, D. Rodney, Y. Bréchet, and O. Bouaziz: Influence of relative density on the architecture and mechanical behaviour of a steel metallic wool. Scr. Mater. 54, 1379 (2006).

    Article  CAS  Google Scholar 

  4. D. Poquillon, B. Viguier, and A. Andrieu: Experimental data about mechanical behaviour during compression tests for various matted fibres. J. Mater. Sci. 40, 5963 (2006).

    Article  Google Scholar 

  5. J-P. Vassal, L. Orgeas, and D. Favier: Modelling microstructure effects on the conduction in fibrous materials with fibre–fibre interface barriers. Modell. Simul. Mater. Sci. Eng. 16, 035007 (2008).

    Article  Google Scholar 

  6. F. Dalmas, J-Y. Cavaille, C. Gauthier, L. Chazeau, and R. Dendievel: Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos. Sci. Technol. 67, 829 (2007).

    Article  CAS  Google Scholar 

  7. J. Lux, A. Ahmadi, C. Gobbé, and C. Delisée: Macroscopic thermal properties of real fibrous materials: Volume averaging method and 3D image analysis. Int. J. Heat Mass Transfer 49, 1958 (2006).

    Article  CAS  Google Scholar 

  8. A. Shahdin, J. Morlier, Y. Gourinat, L. Mezeix, and C. Bouvet: Fabrication and mechanical testing of a new sandwich structure with carbon fiber network core. J. Sandwich Struct. Mater. 12, 569 (2010).

    Article  CAS  Google Scholar 

  9. J.P. Masse: Conception optimale de solutions multimatériaux multifonctionnelles: l’exemple des structures sandwich à peaux en acier–choix des matériaux et développement de nouveaux matériaux de cœur. Ph.D. Thesis, Grenoble INP, France, 2009.

    Google Scholar 

  10. L. Mezeix: Développement de matériaux d’âme pour structures sandwich à base de fibers enchevêtrées. Ph.D. Thesis, Universtité de Toulouse, France, 2010.

    Google Scholar 

  11. A.E. Markaki and T.W. Clyne: Mechanics of thin ultra-light stainless steel sandwich sheet material: Part I. Stiffness. Acta Mater. 51, 1341 (2003).

    Article  CAS  Google Scholar 

  12. A.E. Markaki and T.W. Clyne: Mechanics of thin ultra-light stainless steel sandwich sheet material: Part II. Resistance to delamination. Acta Mater. 51, 1351 (2003).

    Article  CAS  Google Scholar 

  13. J. Dean, P.M. Brown, and T.W. Clyne: The low, intermediate, and high speed impact response of lightweight sandwich panels with metallic fibre cores. In: Proceedings of the 8th International Conference on Sandwich Structure (ICCS8), Portugal; A.J.M. Ferreira, ed, 2008.

    Google Scholar 

  14. R. Gustavsson: Formable sandwich construction material and use of the material as construction material in vehicles, refrigerators, boats, etc. Patent WO 98/01295, AB Volvo, January 15, 1998.

    Google Scholar 

  15. D. Verchere: Structures sandwich acier/polymère/acier. Tech. Ing. Ref M5810, 2011.

    Google Scholar 

  16. A.E. Markaki and T.W. Clyne: Magneto-mechanical actuation of bonded ferromagnetic fibre arrays. Acta Mater. 53, 877 (2005).

    Article  CAS  Google Scholar 

  17. P. Liu, G. He, and L.H. Wu: Fabrication of sintered steel wire mesh and its compressive properties. Mater. Sci. Eng., A 489, 21 (2008).

    Article  Google Scholar 

  18. J.P. Masse and D. Poquillon: Mechanical behavior of entangled materials with or without cross-linked fibers. Scr. Mater. 68, 39 (2013).

    Article  CAS  Google Scholar 

  19. L. Mezeix, C. Bouvet, J. Huez, and D. Poquillon: Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression. J. Mater. Sci. 44, 3652 (2009).

    Article  CAS  Google Scholar 

  20. C.M. van Wyk: Note on the compressibility of wool. J. Text. Inst. 37, 285–292 (1946).

    Article  Google Scholar 

  21. S. Toll: Packing mechanics of fiber reinforcements. Polym. Eng. Sci. 38, 1337 (1998).

    Article  CAS  Google Scholar 

  22. D. Durville: Numerical simulation of entangled materials mechanical properties. J. Mater. Sci. 40, 5941 (2005).

    Article  CAS  Google Scholar 

  23. C. Barbier, R. Dendievel, and D. Rodney: Role of friction in the mechanics of nonbonded fibrous materials. Phys. Rev. E 80, 16115 (2009).

    Article  Google Scholar 

  24. O. Bouaziz, J.P. Masse, and Y. Bréchet: An analytical description of the mechanical hysteresis of entangled materials during loading–unloading in uniaxial compression. Scr. Mater. 64, 107 (2011).

    Article  CAS  Google Scholar 

  25. S. Raganathan and S.G. Advani: Fiber–fiber interactions in homogeneous flows of nondilute suspensions. J. Rheol. 35, 1499 (1991).

    Article  Google Scholar 

  26. B. Mlekusch: Thermoelastic properties of short-fibre-reinforced thermoplastics. Compos. Sci. Technol. 59, 547 (1999).

    Article  Google Scholar 

  27. C. Eberhardt and A. Clarke: Fibre-orientation measurements in short-glass-fibre composites. Part I: Automated, high-angular-resolution measurement by confocal microscopy. Compos. Sci. Technol. 61, 1389 (2001).

    Article  Google Scholar 

  28. M. Delincé and F. Delannay: Elastic anisotropy of a transversely isotropic random network of interconnected fibres: Non-triangulated network model. Acta Mater. 52, 1013 (2004).

    Article  Google Scholar 

  29. H. Yang. and B.W. Lindquist: Application of digital image processing XXIII. In SPIE; A.G. Tescher, ed, Society of Photo-optical Instrumentation Engineers: San Diego, CA, 2000.

    Google Scholar 

  30. R.H. Gong and A. Newton: Image-analysis techniques part II: The measurement of fibre orientation in nonwoven fabrics. J. Text. Inst. 87, 371 (1996).

    Article  CAS  Google Scholar 

  31. J.C. Tan, J.A. Elliott, and T.W. Clyne: Analysis of tomography images of bonded fibre networks to measure distributions of fibre segment length and fibre orientation. Adv. Eng. Mater. 8, 495 (2006).

    Article  CAS  Google Scholar 

  32. J.Y. Buffière, E. Maire, J. Adrien, J.P. Masse, and E. Boller: In situ experiments with x ray tomography: An attractive tool for experimental mechanics. Exp. Mech. 50, 289 (2010).

    Article  Google Scholar 

  33. Avizo 5: http://www.scientificcomputing.com/Avizo-5.aspx.

  34. P. Latil, L. Orgéas, C. Geindreau, P.J.J. Dumont, and S. Rolland du Roscoat: Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos. Sci. Technol. 71(4), 480 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masse, J.P., Barbier, C., Salvo, L. et al. Mechanical and structural characterization of nonsintered and sintered steel wools by x-ray tomography: Description of the techniques and validation on virtual materials. Journal of Materials Research 28, 2852–2860 (2013). https://doi.org/10.1557/jmr.2013.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.280

Navigation