Skip to main content

Advertisement

Log in

Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a simple and quick procedure for the one-pot synthesis of manganese oxides under a basic solvothermal condition in the presence of cationic surfactants acting as the template in a 2-butanol/water solution. Three-dimensional spinel-type MnO2 microspheres composed of small nanoparticles have been fabricated for the first time using our method. Their corresponding electrochemical performances in the applications of supercapacitor electrodes exhibit a good specific capacitance (SC) value of ∼190 F/g at 0.5 A/g and excellent SC retention and Coulombic efficiency of ∼100% and ∼95% after 1000 charge/discharge cycles at 1 A/g, respectively. This suggests its potential applications in energy storage devices. Further, we demonstrate that this solvothermal technique enables the morphological tuning of manganese oxides in various forms such as schists, rods, fibers, and nanoparticles. This work describes a rapid and low-cost technique to fabricate novel architectures of manganese oxides having the desired crystal phase, which will highly benefit various supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. F. Kim, S. Connor, H. Song, T. Kuykendall, and P.D. Yang: Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673 (2004).

    Article  CAS  Google Scholar 

  2. Z.W. Chen, Z. Jiao, D.Y. Pan, Z. Li, M.H. Wu, C.H. Shek, C.M.L. Wu, and J.K.L. Lai: Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 112, 3833 (2012).

    Article  CAS  Google Scholar 

  3. J.E. Millstone, W. Wei, M.R. Jones, H.J. Yoo, and C.A. Mirkin: Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526 (2008).

    Article  CAS  Google Scholar 

  4. W.Y. Ko, W.H. Chen, S.D. Tzeng, S. Gwo, and K.J. Lin: Synthesis of pyramidal copper nanoparticles on gold substrate. Chem. Mater. 18, 6097 (2006).

    Article  CAS  Google Scholar 

  5. W.Y. Ko, W.H. Chen, C.Y. Cheng, and K.J. Lin: Architectural growth of Cu nanoparticles through electrodeposition. Nanoscale Res. Lett. 4, 1481 (2009).

    Article  CAS  Google Scholar 

  6. J.Z. Chen, Y.C. Yen, W.Y. Ko, C.Y. Cheng, and K.J. Lin: The role of the fabrication of anatase-TiO2 chain-networked photoanodes. Adv. Mater. 23, 3970 (2011).

    Article  CAS  Google Scholar 

  7. J.Z. Chen, W.Y. Ko, Y.C. Yen, P.H. Chen, and K.J. Lin: Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633 (2012).

    Article  CAS  Google Scholar 

  8. Y.G. Sun and Y.N. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).

    Article  CAS  Google Scholar 

  9. H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai, and P.D. Yang: Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824 (2006).

    Article  CAS  Google Scholar 

  10. G.H. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford, and S.L. Suib: Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem. Mater. 23, 3892 (2011).

    Article  CAS  Google Scholar 

  11. S.L. Brock, M. Sanabria, J. Nair, S.L. Suib, and T. Ressler: Tetraalkylammonium manganese oxide gels: Preparation, structure, and ion-exchange properties. J. Phys. Chem. B 105, 5404 (2001).

    Article  CAS  Google Scholar 

  12. N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlogl: Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131 (2003).

    Article  CAS  Google Scholar 

  13. G.J.D. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002).

    Article  Google Scholar 

  14. T.D. Nguyen and T.O. Do: Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322 (2009).

    Article  CAS  Google Scholar 

  15. X.K. Huang, D.P. Lv, H.J. Yue, A. Attia, and Y. Yang: Controllable synthesis of alpha- and beta-MnO(2): Cationic effect on hydrothermal crystallization. Nanotechnology 19, 225606 (2008).

    Article  Google Scholar 

  16. L.C. Zhang, Z.H. Liu, H. Lv, X.H. Tang, and K. Ooi: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007).

    Article  CAS  Google Scholar 

  17. J.H. Kim, T. Ayalasomayajula, V. Gona, and D. Choi: Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 183, 366 (2008).

    Article  CAS  Google Scholar 

  18. J.W. Lee, A.S. Hall, J-D. Kim, and T.E. Mallouk: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158 (2012).

    Article  CAS  Google Scholar 

  19. W.F. Wei, X.W. Cui, W.X. Chen, and D.G. Ivey: Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011).

    Article  CAS  Google Scholar 

  20. O. Ghodbane, J.L. Pascal, B. Fraisse, and F. Favier: Structural in situ study of the thermal behavior of manganese dioxide materials: Toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493 (2010).

    Article  CAS  Google Scholar 

  21. J. Zhu, W. Shi, N. Xiao, X. Rui, H. Tan, X. Lu, H.H. Hng, J. Ma, and Q. Yan: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769 (2012).

    Article  CAS  Google Scholar 

  22. O. Ghodbane, J-L. Pascal, and F. Favier: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130 (2009).

    Article  CAS  Google Scholar 

  23. Y. Wang, Q.S. Zhu, and L. Tao: Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties. CrystEngComm 13, 4652 (2011).

    Article  CAS  Google Scholar 

  24. H. Xia, J.K. Feng, H.L. Wang, M.O. Lai, and L. Lu: MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410 (2010).

    Article  CAS  Google Scholar 

  25. D. Portehault, S. Cassaignon, E. Baudrin, and J.P. Jolivet: Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4-/Mn2+ reaction. J. Mater. Chem. 19, 2407 (2009).

    Article  CAS  Google Scholar 

  26. K. Kai, Y. Kobayashi, Y. Yamada, K. Miyazaki, T. Abe, Y. Uchimoto, and H. Kageyama: Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J. Mater. Chem. 22, 14691 (2012).

    Article  CAS  Google Scholar 

  27. S.L. Brock, M. Sanabria, S.L. Suib, V. Urban, P. Thiyagarajan, and D.I. Potter: Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J. Phys. Chem. B 103, 7416 (1999).

    Article  CAS  Google Scholar 

  28. M.A. Camblor, A. Corma, and S. Valencia: Characterization of nanocrystalline zeolite beta. Microporous Mesoporous Mater. 25, 59 (1998).

    Article  CAS  Google Scholar 

  29. S. Bach, M. Henry, N. Baffier, and J. Livage: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325 (1990).

    Article  CAS  Google Scholar 

  30. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, and D. Belanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006).

    Article  CAS  Google Scholar 

  31. S. Devaraj and N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008).

    Article  CAS  Google Scholar 

  32. Y. Xue, Y. Chen, M-L. Zhang, and Y-D. Yan: A new asymmetric supercapacitor based on lambda-MnO2 and activated carbon electrodes. Mater. Lett. 62, 3884 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from National Science Council of Taiwan (Grant Nos. NSC-101-2113-M-005-014-MY3 and NSC 101-2628-M-007-006). We also appreciate Dr. Lih J. Chen at National Tsing Hua University, Taiwan, for providing technical assistance in HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Yin Ko or Kuan-Jiuh Lin.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, WY., Chen, LJ., Chen, YH. et al. Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances. Journal of Materials Research 29, 107–114 (2014). https://doi.org/10.1557/jmr.2013.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.238

Navigation