Skip to main content
Log in

Alternative etching methods to expand nanocasting, and use in the synthesis of hierarchically porous nickel oxide, zinc oxide, and copper monoliths

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocasting into silica templates for preparation of mesoporous materials has up to now been limited to those metal oxides and metals that can withstand the harsh silica etching processes currently used. Two new methods of removing the silica template are reported, either by dissolving the silica in methanolic base or by dissolution in aqueous base under an external potential. The utility of these methods is demonstrated in the synthesis of hierarchically porous zinc oxide, nickel oxide, and copper monoliths that would dissolve or react using other template removal methods. The successful etching of monolithic zinc oxide using methanolic base etching can be explained by the reduced solubility of zinc oxide in methanol compared with an aqueous base, while it also reduces the formation of hydroxides when etching the nickel oxide and copper monoliths. Alternatively, the formation of highly soluble copper oxide/hydroxide can be avoided by holding the copper monolith at a sufficiently negative potential while etching with an aqueous base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. Hierarchically Structured Porous Materials, edited by B-L. Su, C. Sanchez, and X-Y. Yang (Wiley-VCH Verlag, Berlin, 2012).

    Google Scholar 

  2. Y. Li, Z-Y. Fu, and B-L. Su: Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634 (2012).

    Article  CAS  Google Scholar 

  3. J. Banhart: Metal foams: Production and stability Adv. Eng. Mater. 8(9), 781 (2006).

    Article  CAS  Google Scholar 

  4. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, and T.F. Baumann: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656 (2011).

    Article  CAS  Google Scholar 

  5. K. Nakanishi: Hierarchically porous materials by phase separation: Monoliths, in Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optic, Energy, and Life Science, edited by S. Bao-Lian, C. Sanchez, and Y. Xiao-Yu (Wiley-VCH Verlag, Berlin, 2012), p. 241.

    Google Scholar 

  6. C.H. Ko and R. Ryoo: Imaging the channels in mesoporous molecular sieves with platinum. Chem. Commun. 21, 2467 (1996).

    Article  Google Scholar 

  7. R. Ryoo, S.H. Joo, and S. Jun: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation J. Phys. Chem. B 103, 7743 (1999).

    Article  CAS  Google Scholar 

  8. H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu, and D. Zhao: Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem. Commun. 23,2842 (2002).

    Article  Google Scholar 

  9. F. Dao, Q. Lu, and D. Zhao: Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15(9), 739 (2003).

    Article  Google Scholar 

  10. A-H. Lu, D. Zhao, and Y. Wan: Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

  11. A-H. Lu and F. Schüth: Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793 (2006).

    Article  CAS  Google Scholar 

  12. J-H. Smått, F.M. Sayler, A. Grano, and M.G. Bakker: Formation of hierarchically porous metal oxide and metal monoliths by nanocasting into silica monoliths. Adv. Eng. Mater. 14(12), 1059 (2012).

    Article  Google Scholar 

  13. Y. Ren, Z. Ma, and P.G. Bruce: Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 41, 4909 (2012).

    Article  CAS  Google Scholar 

  14. N. Linares, S. Hartmann, A. Galarneau, and P. Barbaro: Continuous partial hydrogenation reactions by Pd@unconventional bimodal porous titania monolith catalysts. ACS Catal. 2, 2194 (2012).

    Article  CAS  Google Scholar 

  15. K. Cabrera, D. Lubda, H-M. Eggenweiler, H. Minakuchi, and K. Nakanishi: A new monolithic-type HPLC column for fast separations. J. High Resolut. Chromatogr. 23(1), 93 (2000).

    Article  CAS  Google Scholar 

  16. N. Tanaka, H. Nagayama, H. Kobayashi, T. Ikegami, K. Hosoya, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Cabrera, and D. Lubda: Monolithic silica columns for HPLC, micro-HPLC, and CEC. J. High Resolut. Chromatogr. 23(1), 111 (2000).

    Article  CAS  Google Scholar 

  17. A. Taguchi, J-H. Smått, and M. Lindén: Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15(14), 1209 (2003).

    Article  CAS  Google Scholar 

  18. J-H. Smått, C. Weidenthaler, J.B. Rosenholm, and M. Lindén: Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem. Mater. 18, 1443 (2006).

    Article  Google Scholar 

  19. S. Polarz, A.V. Orlov, F. Schüth, and A-H. Lu: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls. Chem. Euro. J. 13, 592 (2007).

    Article  CAS  Google Scholar 

  20. T. Waitz, M. Tiemann, P.J. Klar, J. Sann, J. Stehr, and B.K. Meyer: Crystalline ZnO with an enhanced surface area obtained by nanocasting. Appl. Phys. Lett. 90, 123108 (2007).

    Article  Google Scholar 

  21. M. Tiemann: Repeated templating. Chem. Mater. 20, 961 (2008).

    Article  CAS  Google Scholar 

  22. S. Lepoutre, B. Julián-López, C. Sanchez, H. Amenitsch, M. Linden, and D. Grosso: Nanocasted mesoporous nanocrystalline ZnO thin films. J. Mater. Chem. 20, 537 (2010).

    Article  CAS  Google Scholar 

  23. J-H. Smått, S.A. Schunk, and M. Lindén: Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354 (2003).

    Article  Google Scholar 

  24. A-H. Lu, J-H. Smått, S. Backlund, and M. Lindén: Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater. 72, 59 (2004).

    Article  CAS  Google Scholar 

  25. C. Liu and Y. Li: Synthesis and characterization of amorphous α-nickel hydroxide. J. Alloy Compd. 478, 415 (2009).

    Article  CAS  Google Scholar 

  26. J.A. Moulijn, A.E. van Diepen, and F. Kapteijn: Catalyst deactivation: Is it predictable? What to do? Appl. Catal., A. 212, 3 (2001).

    Article  CAS  Google Scholar 

  27. A. Cao, R. Lu, and G. Veser: Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 12, 13499 (2010).

    Article  CAS  Google Scholar 

  28. R.H. Lamoreaux, D.L. Hildenbrand, and L. Brewer: High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Data 16, 419 (1987).

    Article  CAS  Google Scholar 

  29. D.R. Lide: Crc Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 85 ed. (CRC Press, London, 2004).

    Google Scholar 

  30. W. Yue and W. Zhou: Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. J. Mater. Chem. 17, 4947 (2007).

    Article  CAS  Google Scholar 

  31. M.E. Cabo, E. Pellicer, E. Rossinyol, O. Castell, S. Surinach, and M.D. Baro: Mesoporous NiCo2O4 spinel: Influence of calcination temperature over phase purity and thermal stability. Cryst. Growth Des. 9, 4814 (2009).

    Article  CAS  Google Scholar 

  32. H. Liu, G. Wang, J. Liu, S. Qiao, and H. Ahn: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21, 3046 (2011).

    Article  CAS  Google Scholar 

  33. F. Jiao, A.H. Hill, A. Harrison, A. Berko, A.V. Chadwick, and P.G. Bruce: Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J. Am. Chem. Soc. 130, 5262 (2008).

    Article  CAS  Google Scholar 

  34. G.J. Kim and X-F. Guo: Fabrication and application of highly ordered mesoporous Co3O4, NiO, and their metals. J. Phys. Chem. Solids 71, 612 (2010).

    Article  CAS  Google Scholar 

  35. W. Yue and W. Zhou: Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chem. Mater. 19, 2359 (2007).

    Article  CAS  Google Scholar 

  36. K.H. Gayer and A.B. Garrett: The equilibria of nickel hydroxide, Ni(OH)2, in solutions of hydrocholic acid and sodium hydroxide at 25º. J. Am. Chem. Soc. 71(9), 2973 (1949).

    Article  CAS  Google Scholar 

  37. F.M. Sayler, A.J. Grano, S. Wiedmer, J-H. Smått, and M.G. Bakker: Application of 3-D hierarchically porous silver, cobalt oxide and zinc oxide monoliths to chromatographic separations. MRS Proc. 1389, g03–16 (2012). doi:http://dx.doi.org/10.1557/opl.2012.525.

    Google Scholar 

  38. H. Yen, Y. Seo, R. Guillet-Nicolas, S. Kaliaguinec, and F. Kleitz: One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chem. Commun. 47, 10473 (2011).

    Article  CAS  Google Scholar 

  39. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, Texas, 1974).

    Google Scholar 

Download references

Acknowledgments

The use of Central Analytical Facility instruments (SEM, XRD) is greatly acknowledged. This work was partially supported by NSF under Grant No. CHE-0719398 (MGB) and by the Academy of Finland through Grant No. 259310 (JHS). The technical assistance of Ms. Kate Price in the development of the voltage stabilized etch, Mr. Jake Mims for sample preparation, and Mr. Clifton Watkins for running Raman spectroscopy are also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Bakker.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grano, A.J., Sayler, F.D., Smått, JH. et al. Alternative etching methods to expand nanocasting, and use in the synthesis of hierarchically porous nickel oxide, zinc oxide, and copper monoliths. Journal of Materials Research 28, 2483–2489 (2013). https://doi.org/10.1557/jmr.2013.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.153

Navigation