Skip to main content
Log in

Functionalization of open-celled foams by homogeneous slurry based coatings

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new technology to coat open-celled foams homogeneously by using a vertical centrifuge and shear-thinning slurries is presented. The technology is exemplified by a complex multilayer-coated foam for catalytic applications (Fig. 3). Furthermore, a new calculation model for the estimation of coating thickness and for quality assessment is introduced and proved by comparing the calculated and experimental data. Based on these results, various material combinations are shown, e.g., layers made of rough particles, zeolites, activated carbon, γ-Al2O3, perovskites, mullite, and yttria–alumina–garnet on SiC–, Al2O3–, or cordierite foams. Theses “functionalized foams” can be used for a wide variety of practical applications, e.g., as adsorbents and catalysts in environmental engineering, as preforms for metal matrix composites, and for special purpose applications that require corrosion and oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
TABLE II.
TABLE III.
TABLE IV.
TABLE V.
FIG. 4.
TABLE VI.
FIG. 5.
TABLE VII.
FIG. 6.
FIG. 7.
TABLE VIII.
FIG. 8.
TABLE IX.
FIG. 9.
TABLE X.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. J. Adler and G. Standke: Offenzellige Schaumkeramik, Part 1/2, Keram. Z. 55(9/10), 694–703/786–792 (2003). [in German].

  2. K. Schwartzwalder and A.V. Somers: Method of making porous ceramic articles. U.S. Patent No. 3090094, 1963.

  3. D. Fino, N. Russo, G. Saracco, and V. Specchia: Multifunctional filter for treatment of the flue gases from municipal waste incinerators. Ind. Eng. Chem. Res. 44, 9542–9548 (2005).

    CAS  Google Scholar 

  4. L. Giani, C. Cristiani, G. Groppi, and E. Tronconi: Washcoating method for Pd/[gamma]-Al2O3 deposition on metallic foams. Appl. Catal., B 62, 121–131 (2006).

    CAS  Google Scholar 

  5. B.A.A. Van Setten, J. Bremmer, S.J. Jelles, M. Makkee, and J.A. Moulijn: Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catal. Today 53, 613–621 (1999).

    Google Scholar 

  6. K.C. Taylor: Ceramic foam filtration: No longer a band-aid. Mod. Cast. 94, 25–28 (2004).

    CAS  Google Scholar 

  7. Anonym author: Clean metal, the ‘Holy Grail' for all foundries. Foundry J. 180, 283–285 (2006).

  8. Anonym author: Ceramic foam. J. Interceram. 38, 36 (1989).

  9. K. Zhang and J. Zhu: Filtration technology - an effective way to improve quality of heavy iron castings. In 69th World Foundry Congress, Proceedings, Hangzhou, CN, Oct 16–20, 2010.

  10. M. Aslanowicz, L. Oscilowski, S. Pysz, J. Stachanczyk, and P. Wieliczko: Application of the ceramic filters in the gating systems for cast steel. Przeglad Odlewnictwa 55, 652–659 (2005).

    CAS  Google Scholar 

  11. C.G. Aneziris, S. Dudczig, M. Emmel, H. Berek, G. Schmidt, and J. Hubalkova: Reactive filters for steel melt filtration. Adv. Eng. Mater. 15, 46–59 (2013).

    CAS  Google Scholar 

  12. Cellular Ceramics: Structure, Manufacturing, Properties and Applications, edited by M. Scheffler and P. Colombo (Wiley-VCH: Weinheim, Germany, 2005).

    Google Scholar 

  13. E.C. Bucharsky, K.G. Schell, R. Oberacker, and M.J. Hoffmann: Preparation of transparent glass sponges via replica method using high-purity silica. J. Am. Soc. 93, 111–141 (2010).

    CAS  Google Scholar 

  14. J. Adler and G. Standke: Open-celled silicon carbide foams made by replication method–manufacturing, properties and application of SSiC and SiSiC foams. In Proceedings Intern. Conf. on porous ceramic materials, PCM 2005, 20–21 October at the Oud Sint-Jan, Bruges, CD-ROM, Flemish Institute for Technological Research, 2005. 6 pages.

  15. A. Ortona, S. Gianella, and D. Gaia: SiC foams for high temperature applications. In Advances in Bioceramics and Porous Ceramics IV: Ceramic Engineering and Science Proceedings, Vol. 32, John Wiley & Sons, Inc., 2011; pp. 153–161.

  16. J. Adler, G. Standke, M. Jahn, and F. Marschallek: Cellular ceramics made of silicon carbide ceramics for burner technology. Ceram. Eng. Sci. Proc. 29, 271–286 (2009).

    Google Scholar 

  17. V. Paserin, S. Marcuson, J. Shu, and D.S. Wilkinson: CVD technique for Inco nickel foam production. Adv. Eng. Mater. 6, 454–459 (2004).

    CAS  Google Scholar 

  18. J. Adler, K. Kümmel, P. Quadbeck, G. Standke, and G. Stephani: Synthesis of open-celled metal foams by replication technique. In: Proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications, CELLMET 2005; B. Kieback and G. Stephani, ed., Fraunhofer IRB Stuttgart, 2005; pp. 199–205.

  19. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, and R. Poggie: Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. Part B 58, 180–187 (2001).

    CAS  Google Scholar 

  20. H.J. Ronold, S.P. Lyngstadaas, and J.E. Ellingsen: Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials 24, 4559–4564 (2003).

    CAS  Google Scholar 

  21. A.D. Jatkar: A New Catalyst Support Structure for Automotive Catalytic Converters. SAE 971032, 1997.

    Google Scholar 

  22. G.C. Koltsakis, D.K. Katsaounis, I.A. Markomanolakis, Z.C. Samaras, D. Naumann, S. Saberi, and A. Böhm: Metal Foam Substrate for DOC and DPF Applications. SAE 2007-01-0659, 2007.

    Google Scholar 

  23. J. Adler, and G. Standke: Open-celled silicon carbide foam and method for production thereof. WO 02/20426 (2002).

  24. J. Adler, A. Fuessel, D. Boettge, F. Marschallek, M. Jahn, and A. Michaelis: Cellular ceramics in combustion environments. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; C. Stephani, T. Hipke, M. Scheffler, and J. Adler, eds., Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; pp. 137–142.

  25. J. Adler, M. Teichgraeber, G. Standke, H. Jaunich, H. Stoever, and R. Stoetzel: Open-cell expanded ceramic with a high level of strength, and process for the production thereof. U.S. Patent No. 6 635 339 1997.

  26. J. Adler and G. Standke: Si-sic LigaFill® foams and related net-like structures–new lightweight and low-cost materials for spaceborne applications, in Materials for Transportation Technology, Vol. 1, edited by P.J. Winkler (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000), pp. 270–275. doi: 10.1002/3527606025.ch42.

    CAS  Google Scholar 

  27. P. Quadbeck, K. Kuemmel, R. Hauser, G. Standke, J. Adler, G. Stephani, and B. Kieback: Structural and material design of open-cell powder metallurgical foams. Adv. Eng. Mater., Special Issue: Cellular Materials 13, 1024–1030 (2011).

    CAS  Google Scholar 

  28. G. Standke, P. Quadbeck, K. Kümmel, H. Balzer, and A. Wierhake: Transfer of manufacturing process for stainless-steel foam to industrial scale. In Cellular Materials Proceedings, CELLMAT 2012, Conventus Congressmanagement & Marketing GmbH Jena, ISBN 978-3-00-039965-7 (2012).

  29. R. Hauser, G. Standke, J. Heineck, G. Stephani, and P. Quadbeck: Open cell titanium foams for bone replacement. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; G. Stephani, T. Hipke, M. Scheffler, and J. Adler, eds, Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; p. 61.

  30. P. Quadbeck, K. Kuemmel, G. Stephani, G. Standke, J. Adler, and H. Uhlenhut: Molybdenum foams for heat insulation in industrial furnaces. In Cellular Metals for Structural and Functional Applications, CELLMET 2008: Proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications; G. Stephani, ed., Fraunhofer IFAM, Dresden, 2009; p. 107–112.

  31. J. Adler, G. Standke, D. Kopejzny, G. Stephani, K. Kuemmel, and W. Beckert: Thermal radiation shield for vacuum and protective atmosphere. U.S. Patent No. 2008/0131684 (2008).

  32. R. Phelan, D. Weaire, and K. Brakke: Computation of equilibrium foam structures using the surface evolver. Exp. Math. 4, 181–192 (1995).

    Google Scholar 

  33. Standard Test Method for Cell Size of Rigid Cellular Plastics ASTM D 3576-77 (2004).

  34. PORE!SCAN product information. http://www.giib.de/de/pore_scan.html, 2013.

  35. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, 1999), p. 16–38.

    Google Scholar 

  36. J.T. Richardson, Y. Peng, and D. Remue: Properties of ceramic foam catalyst supports: Pressure drop. Appl. Catal., A 204, 19–32 (2000).

    CAS  Google Scholar 

  37. F.C. Buciuman and B. Kraushaar-Czarnetzki: Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. Ind. Eng. Chem. Res. 42, 1863–1869 (2003).

    CAS  Google Scholar 

  38. J. Grosse, B. Dietrich, G.I. Garrido, P. Habisreuther, N. Zarzalis, H. Martin, M. Kind, and B. Kraushaar-Czarnetzki: Morphological characterization of ceramic sponges for applications in chemical engineering. Ind. Eng. Chem. Res. 48, 10395–10401 (2009).

    CAS  Google Scholar 

  39. L. Giani, G. Groppi, and E. Tronconi: Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. Res. 44, 4993–5002 (2005).

    CAS  Google Scholar 

  40. A. Inayat, H. Freund, T. Zeiser, and W. Schwieger: Determining the specific surface area of ceramic foams: The tetrakaidecahedra model revisited Chem. Eng. Sci. 66, 1179–1188, (2011).

    CAS  Google Scholar 

  41. R.J. Farrauto, Y. Liu, W. Ruettinger, O. Ilinich, L. Shore, and T. Giroux: Precious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy. Catal. Rev. Sci. Eng. 49, 141–196, (2007).

    CAS  Google Scholar 

  42. M. Haruta, Y. Souma, and H. Sano: Catalytic combustion of hydrogen-II. An experimental investigation of fundamental conditions for burner design. Int. J. Hydrogen Energy 7, 729–736 (1982).

    CAS  Google Scholar 

  43. P. Chin, X. Sun, G.W. Roberts, and J.J. Spivey: Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams. Appl. Catal., A 302, 22–31 (2006).

    CAS  Google Scholar 

  44. I. Cerri, G. Saracco, and V. Specchia: Methane combustion over low-emission catalytic foam burners. Catal. Today 60, 21–32 (2000).

    CAS  Google Scholar 

  45. K. Jirátová, L. Morávková, J. Malecha, and B. Koutský: Ceramic foam in catalytic combustion of methane. Collect. Czech. Chem. Commun. 60, 473–481 (1995).

    Google Scholar 

  46. A.N. Pestryakov, V.V. Lunin, A.N. Devochkin, L.A. Petrov, N.E. Bogdanchikova, and V.P. Petranovskii: Selective oxidation of alcohols over foam-metal catalysts. Appl. Catal., A 227, 125–130 (2002).

    CAS  Google Scholar 

  47. Y. Wang, D.P. Vanderwiel, A.L.Y. Tonkovich, Y. Gao, and E.G. Baker: Catalyst structure and method of Fischer-Tropsch synthesis. U.S. Patent No. 2002099103 (2002).

  48. R. Güttel, U. Kunz, and T. Turek: Reaktoren für die Fischer-Tropsch-Synthese. Chemie Ingenieur Technik 79, 531–543 (2007) [in German].

    Google Scholar 

  49. A. Reitzmann, F.C. Patcas, and B. Kraushaar-Czarnetzki: Keramische Schwämme: Anwendungspotenzial monolithischer Netzstrukturen als katalytische Packungen. Chemie Ingenieur Technik 78, 885–898 (2006) [in German].

    CAS  Google Scholar 

  50. J.T. Richardson and M.V. Twigg: Ceramic Foam Catalyst Supports Preparation and Properties. MRS Proceedings, 368, 315 (1994).

    Google Scholar 

  51. M.V. Twigg and J.T. Richardson: Theory and applications of ceramic foam catalysts. Chem. Eng. Res. Des. 80, 183–189 (2002).

    CAS  Google Scholar 

  52. M.V. Twigg and J.T. Richardson: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46, 4166–4177 (2007).

    CAS  Google Scholar 

  53. B.A.A. Van Setten, C. van Gulijk, M. Makkee, and J.A. Moulijn: Molten salts are promising catalysts. How to apply in practice? Top. Catal. 16/17, 275–278 (2001).

    Google Scholar 

  54. J.T. Richardson, M. Garrait, and J.K. Hung: Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports. Appl. Catal., A 255, 69–82 (2003).

    CAS  Google Scholar 

  55. F.C. Buciuman and B. Kraushaar-Czarnetzki: Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catal. Today 69, 337–342 (2001).

    CAS  Google Scholar 

  56. L. Landau and B. Levich: Dragging of a liquid by a moving plate. Acta Phys. Chim. U.R.S.S. 17, 42–45 (1942).

    Google Scholar 

  57. A.G. Emslie, F.T. Bonner, and L.G. Peck: Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858–862 (1958).

    CAS  Google Scholar 

  58. T.G. Mezger: Das Rheologie Handbuch 2. Auflage (Vincentz Network GmbH & Co. KG, Hannover, 2006) [in German].

    Google Scholar 

  59. D. Boettge, J. Adler, and G. Standke: Cellular material for high-temperature applications and method for the production thereof. U.S. Patent No. WO2010/066649 (2010).

  60. A.P. Philipse and H.L. Schram: Non-darcian airflow through ceramic foams. J. Am. Ceram. Soc. 74, 728–732 (1991).

    CAS  Google Scholar 

  61. G. Standke, J. Adler, and D. Boettge: Open-cell ceramic and/or metal foams having a rough enveloping surface and a method for the production thereof. U.S. Patent No. WO2010/066648 (2010).

  62. D. Boettge and J. Adler: Functionalization of ceramic foams for high-temperature catalytic applications illustrated by the development of a lean gas reactor. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; G. Stephani, T. Hipke, M. Scheffler, and J. Adler, eds., Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; pp. 191–196.

  63. M. Jahn, M. Heddrich, A. Weder, E. Reichelt, and R. Lange: Oxidative dry-reforming of biogas: Reactor design and sofc system integration. Energy Technol. 1, 48–58 (2013).

    Google Scholar 

  64. A.N. Pestryakov, E.N. Yurchenko, and A.E. Feofilov: Foam-metal catalysts for purification of waste gases and neutralization of automotive emissions. Catal. Today 29, 67–70 (1996).

    CAS  Google Scholar 

  65. B.A.A.L. Van Setten, J. Bremmer, S.J. Jelles, M. Makkee, and J.A. Moulijn: Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catal. Today 53, 613–621 (1999).

    CAS  Google Scholar 

  66. B.A.A.L. Van Setten, C. van Gulijk, M. Makkee, and J.A. Moulijn: Molten salts are promising catalysts. How to apply in practice? Top. Catal. 16/17, 275–278 (2001).

    CAS  Google Scholar 

  67. W.M. Carty and P.W. Lednor: Monolithic ceramics and heterogeneous catalysts: Honeycombs and foams. Curr. Opin. Solid State Mater. Sci. 1, 88–95 (1996).

    CAS  Google Scholar 

  68. D. Boettge, J. Adler, G. Standke, T. Krech, R. Krippendorf, and P. Scholz: Catalytically functionalized ceramic foams for exhaust gas treatment. In Cellular Materials Proceedings, CELLMAT 2012, Conventus Congressmanagement & Marketing GmbH Jena, ISBN 978-3-00-039965-7 (2012).

  69. T. Zeuner, P. Stojanov, P. Busse, and P.R. Sahm: 7th European Conference on Composite Materials ECCM-7, London, May 14-16, 1996. (Woodhead Publishing Ltd., Abington Hall, Cambridge, UK, 1996).

  70. J. Schreiner, D. Regener, E. Ambos, and M. Ziesemann: Konstruieren und Gießen (4), 32 (2007).

    Google Scholar 

  71. G. Standke, T. Müller, A. Neubrand, J. Weise, and M. Göpfert: Cost-efficient metal-ceramic composites - novel foam-preforms, casting processes and characterisation. Adv. Eng. Mater. 12, 189–196 (2010).

    CAS  Google Scholar 

  72. W. Acchar, E. Ramalho, F. Souza, W. Torquato, V. Rodrigues, and M. Innocentini: Characterization of cellular ceramics for high-temperature applications. J. Mater. Sci. 43, 6556–6561 (2008).

    CAS  Google Scholar 

  73. A. Ortona, S. Pusterla, P. Fino, F.R.A. Mach, A. Delgado, and S. Biamino: Aging of reticulated SiSiC foams in porous burners. Adv. Appl. Ceram. 109, 246–251 (2010).

    CAS  Google Scholar 

  74. M. Presas, J. Pastor, J. Lorca, A. Martín, J. Segurado, and C. González: Strength and toughness of cellular SiC at elevated temperature. Special issue honouring Professor Manuel Elices on the occasion of his 70th birthday, Eng. Fail. Anal. 16, 2598–2603 (2009).

    CAS  Google Scholar 

  75. H.P. Martin, G. Standke, and J. Adler: A new oxidation protection strategy for silicon carbide foams. Adv. Eng. Mater. 10, 227–234 (2008).

    CAS  Google Scholar 

  76. E. Bernardo, G. Parcianello, P. Colombo, J. Adler, and D. Boettge: Mullite monoliths, coatings and composites from a preceramic polymer containing alumina nano-sized particles, in Advances in Polymer Derived Ceramics and Composites (John Wiley & Sons, Inc., 2010), pp. 51–60.

    Google Scholar 

Download references

Acknowledgment

Parts of the presented work were financially supported by German Federal Ministry of Education and Research (BMBF) and BMWI (Grant Nos. 01LS05016 and AiF161ZBR/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Boettge.

Nomenclature

a r

radial acceleration

a r_min

minimal radial acceleration

d CA,si.

measured layer thicknesses of CA-washcoat

d dip

layer thickness that is formed by dipping

d spin

layer thickness that is formed by centrifugation (spinning)

\(\bar d_{{\rm{spin}}}\)

medium layer thickness that is formed by centrifugation (spinning)

d s

diameter of the foam strut

d w

diameter of the cell window

D

foam thickness

E

specific stiffness

G

storage modulus

G

loss modulus

k

specific permeability

N

rotational speed of the centrifuge

Δp

pressure drop

sc

solid content

S geo

specific geometrical surface area

s total

drying and sinter shrinkage

V

superficial air velocity

β

inertial coefficient

ε0

open foam porosity

η

dynamic viscosity

ρ

gas density

ρS

slurry density

τ0

yield point

τrep

representative shear stress

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettge, D., Standke, G., Fuessel, A. et al. Functionalization of open-celled foams by homogeneous slurry based coatings. Journal of Materials Research 28, 2220–2233 (2013). https://doi.org/10.1557/jmr.2013.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.127

Navigation