Skip to main content
Log in

Suitability of various complex hydrides for foaming aluminum alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Some hydrides that could replace TiH2 as the hitherto most suitable blowing agent for foaming aluminum alloys were investigated. Hydrides taken from the group MBH4 (M = Li, Na, K) and LiAlH4 were selected since these have not been studied in the past although their decomposition characteristics appear to be suitable. Foamable precursors of alloy AlSi8Mg4 were manufactured by pressing blends of metal and blowing agent powders. Powders, precursors and precursor filings were studied by mass spectrometry to obtain the hydrogen desorption profile. Foaming experiments were conducted with simultaneous x-ray radiographic monitoring. Two Li-containing blowing agents were found to perform well and can be considered alternatives to TiH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J. Banhart: Manufacturing routes for metallic foams JOM 52(12), 22 (2000).

    Article  CAS  Google Scholar 

  2. B. Matijasevic and J. Banhart: Improvement of aluminium foam technology by tailoring of blowing agent. Scr. Mater. 54(4), 503 (2006).

    Article  CAS  Google Scholar 

  3. V. Gergely and B. Clyne: The FORMGRIP process: Foaming of reinforced metals by gas release in precursors. Adv. Eng. Mater. 2(4), 175 (2000).

    Article  CAS  Google Scholar 

  4. A.R. Kennedy: The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms. Scr. Mater. 47(11), 763 (2002).

    Article  CAS  Google Scholar 

  5. D. Lehmhus and G. Rausch: Tailoring titanium hydride decomposition kinetics by annealing in various atmospheres. Adv. Eng. Mater. 6(5), 313 (2004).

    Article  CAS  Google Scholar 

  6. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka: Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 54(7), 1887 (2006).

    Article  CAS  Google Scholar 

  7. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart: Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction. Acta Mater. 59(16), 6318 (2011).

    Article  Google Scholar 

  8. C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart: Partial decomposition of TiH2 studied in situ by energy-dispersive diffraction and ex situ by diffraction microtomography of hard X-ray synchrotron radiation. Scr. Mater. 66(10), 757 (2012).

    Article  Google Scholar 

  9. T. Nakamura, S.V. Gnyloskurenko, K. Sakamoto, A.V. Byakova, and R. Ishikawa: Development of new foaming agent for metal foam. Mater. Trans. 43(5), 1191 (2002).

    Article  CAS  Google Scholar 

  10. S.V. Gnyloskurenko, A.V. Byakova, A.I. Sirko, A.O. Dudnyk, Y.V. Milman, and T. Nakamura: Advanced structure and deformation pattern of Al based alloys foamed with calcium carbonate agent, in Porous Metals and Metallic Foams: Metfoam 2007, edited by L.P. Lefebvre, J. Banhart, and D.C. Dunand (DEStech, Montreal, Canada, 2008), p. 399.

    Google Scholar 

  11. D.H. Yang, B.Y. Hur, and S.R. Yang: Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. J. Alloys Compd. 461(1–2), 221 (2008).

    Article  CAS  Google Scholar 

  12. D. Li, J. Li, T. Li, T. Sun, X. Zhang, and G. Yao: Preparation and characterization of aluminum foams with ZrH2 as foaming agent. Trans. Nonferrous Met. Soc. China 21(2), 346 (2011).

    Article  CAS  Google Scholar 

  13. C. Körner, M. Hirschmann, V. Bräutigam, and R.F. Singer: Endogenous particle stabilization during magnesium integral foam production. Adv. Eng. Mater. 6(6), 385 (2004).

    Article  Google Scholar 

  14. D.P. Mondal, M.D. Goel, and S. Das: Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum–fly ash composite foam. Mater. Des. 30(4), 1268 (2009).

    Article  CAS  Google Scholar 

  15. M. Au, W. Spencer, A. Jurgensen, and C. Zeigler: Hydrogen storage properties of modified lithium borohydrides. J. Alloys Compd. 462(1–2), 303 (2008).

    Article  CAS  Google Scholar 

  16. J.Y. Lee, Y-S. Lee, J-Y. Suh, J-H. Shim, and Y.W. Cho: Metal halide doped metal borohydrides for hydrogen storage: The case of Ca(BH4)2–CaX2 (X=F, Cl) mixture. J. Alloys Compd. 506(2), 721 (2010).

    Article  CAS  Google Scholar 

  17. E. Rönnebro: Development of group II borohydrides as hydrogen storage materials. Curr. Opin. Solid State Mater. Sci. 15(2), 44 (2011).

    Article  Google Scholar 

  18. H. Senoh, Z. Siroma, N. Fujiwara, and K. Yasuda: A fundamental study on electrochemical hydrogen generation from borohydrides. J. Power Sources 185(1), 1 (2008).

    Article  CAS  Google Scholar 

  19. H.W. Li, Y.G. Yan, S. Orimo, A. Zuttel, and C.M. Jensen: Recent progress in metal borohydrides for hydrogen storage. Energies 4(1), 185 (2011).

    Article  CAS  Google Scholar 

  20. E. Fakioglu, Y. Yurum, and T.N. Veziroglu: A review of hydrogen storage systems based on boron and its compounds. Int. J. Hydrogen Energy 29(13), 1371 (2004).

    Article  CAS  Google Scholar 

  21. D. Chandra, J.J. Reilly, and R. Chellappa: Metal hydrides for vehicular applications: The state of the art. JOM 58(2), 26 (2006).

    Article  CAS  Google Scholar 

  22. H.M. Helwig, S. Hiller, F. Garcia-Moreno, and J. Banhart: Influence of compaction conditions on the foamability of AlSi8Mg4 alloy. Metall. Mater. Trans. B 40(5), 755 (2009).

    Article  Google Scholar 

  23. M.A. Rodriguez-Perez, E. Solorzano, J.A. De Saja, and F. Garcia-Moreno: The time-uncoupled aluminium free-expansion: Intrinsic anisotropy by foaming under conventional conditions, in Porous Metals and Metallic Foams: Metfoam 2007, edited by L.P. Lefebvre, J. Banhart, and D.C. Dunand (DEStech, Montreal, Canada, 2008), p. 75.

    Google Scholar 

  24. C. Jiménez, F. García-Moreno, J. Banhart, and G. Zehl: Effect of relative humidity on pressure-induced foaming (PIF) of aluminium-based precursors, in Porous Metals and Metallic Foams: Metfoam 2007, edited by L-P. Lefebvre, J. Banhart, and D. Dunand (DEStech, Montréal, Canada, 2008), p. 59.

    Google Scholar 

  25. C. Jiménez, F. Garcia-Moreno, M. Mukherjee, O. Goerke, and J. Banhart: Improvement of aluminium foaming by powder consolidation under vacuum. Scr. Mater. 61(5), 552 (2009).

    Article  Google Scholar 

  26. H.M. Helwig, F. Garcia-Moreno, and J. Banhart: A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys. J. Mater. Sci. 46(15), 5227 (2011).

    Article  CAS  Google Scholar 

  27. F. Garcia-Moreno, M. Fromme, and J. Banhart: Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv. Eng. Mater. 6(6), 416 (2004).

    Article  Google Scholar 

  28. I.J. van der Pauw: A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 20, 5 (1958).

    Google Scholar 

  29. P.G. Partridge: Oxidation of aluminium lithium alloys in the solid and liquid states. Int. Mater. Rev. 35(1), 37 (1990).

    Article  Google Scholar 

  30. A.A. Shirzadi, H. Assadi, and E.R. Wallach: Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf. Interface Anal. 31(7), 609 (2001).

    Article  CAS  Google Scholar 

  31. A. Ureña, J.M.G. de Salazar, J. Quinones, S. Merino, and J.J. Martin: Diffusion bonding of an aluminium-lithium alloy (AA8090) using aluminium-copper alloy interlayers.1. Microstructure. J. Mater. Sci. 31(3), 807 (1996).

    Article  Google Scholar 

  32. A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, and C. Emmenegger: LiBH4 a new hydrogen storage material. J. Power Sources 118(1–2), 1 (2003).

    Article  Google Scholar 

  33. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, P.H. Kamm, T.R. Neu, M. Klaus, C. Genzel, A. Hilger, I. Manke, and J. Banhart: Metal foaming studied in Situ by energy dispersive X-ray diffraction of synchrotron radiation, X-ray radioscopy, and optical expandometry. Adv. Eng. Mater. 15(3), 141 (2013).

    Article  Google Scholar 

  34. F. Campana and D. Pilone: Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Mater. Sci. Eng., A 479(1–2), 58 (2008).

    Article  Google Scholar 

  35. F. Garcia-Moreno and J. Banhart: Foaming of blowing agent-free aluminium powder compacts. Colloids Surf., A 309(1–3), 264 (2007).

    Article  CAS  Google Scholar 

  36. H. Stanzick, I. Duarte, and J. Banhart: Foaming process of aluminum. Materialwiss. Werkstofftech. 31(6), 409 (2000).

    Article  CAS  Google Scholar 

  37. D. Emadi, J.E. Gruzleski, and J.M. Toguri: The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metall. Trans. B 24(6), 1055 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco García-Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamm, P.H., García-Moreno, F., Jiménez, C. et al. Suitability of various complex hydrides for foaming aluminum alloys. Journal of Materials Research 28, 2436–2443 (2013). https://doi.org/10.1557/jmr.2013.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.110

Navigation