Skip to main content
Log in

Microstructure and mechanical properties of the hot-rolled Mg–Y–Nd–Zr alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructures and mechanical properties of the Mg–4Y–2.5Nd–0.6Zr (wt%) alloy in the as-cast, as-rolled, and rolled-T5 conditions have been investigated. Results showed that the as-cast sample mainly consisted of the α-Mg matrix, network-like Mg41Nd5 phase, and cuboid-shaped Mg24Y5 particles. For the as-rolled sample, the thermally stable Mg24Y5 particles located at both grain boundaries and matrix, and the average grain size was greatly refined to about 15 μm. Yield strength, ultimate tensile strength, and elongation of as-rolled samples were 290 MPa, 235 MPa, and 10%, respectively. They were enhanced by 48.7%, 56.7%, and 38.9% correspondingly compared with those of the as-cast sample. After isothermal aging at 250 °C for 4 h, the optimal mechanical properties can be obtained. Besides, the tensile strengths of as-rolled and rolled-T5 samples decreased gradually with a gradual increase of ductility from room temperature to 300 °C. Quasicleavage and cleavage fracture were the fracture patterns of as-rolled and rolled-T5 samples, respectively, at room temperature. For samples under the two conditions, fracture mode similarly changed with the increase of test temperatures, and ductile fracture can be observed at higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE III.
TABLE IV.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. L.L. Rokhlin: Magnesium Alloys Containing Rear Earth Metals (Taylor and Francis, London, 2003).

    Book  Google Scholar 

  2. B.L. Mordike and T. Ebert: Magnesium: Properties-applications-potential. Mater. Sci. Eng., A 302, 37 (2001).

    Article  Google Scholar 

  3. W.P. Li, H. Zhou, and Z.F. Li: Effect of gadolinium on microstructure and rolling capability of AZ31 alloy. J. Alloys Compd. 475, 227 (2009).

    Article  CAS  Google Scholar 

  4. L. Lin, L.J. Chen, and Z. Liu: Tensile strength improvement of an Mg-12Gd-3Y(wt%) alloy processed by hot extrusion and free forging. J. Mater. Sci. 43, 4493 (2008).

    Article  CAS  Google Scholar 

  5. W.J. Ding, D.Q. Li, Q.D. Wang, and Q. Li: Microstructure and mechanical properties of hot-rolled Mg-Zn-Nd-Zr alloys. Mater. Sci. Eng., A 483–484, 228 (2008).

    Article  Google Scholar 

  6. T. Homma, N. Kunito, and S. Kamado: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61, 644 (2009).

    Article  CAS  Google Scholar 

  7. K. Liu and J. Meng: Microstructures and mechanical properties of the extruded Mg-4Y-2Gd-xZn-0.4Zr alloys. J. Alloys Compd. 509, 3299 (2011).

    Article  CAS  Google Scholar 

  8. J.H. Zhang, Z. Leng, S.J. Liu, J.Q. Li, M.L. Zhang, and R.Z. Wu: Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults. J. Alloys Compd. 509, 7717 (2011).

    Article  CAS  Google Scholar 

  9. J.F. Nie and B.C. Muddle: Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Mater. 48, 1691 (2000).

    Article  CAS  Google Scholar 

  10. A.R. Wu and C.Q. Xia: Study of the microstructure and mechanical properties of Mg-rare earth alloys. Mater. Des. 28, 1963 (2007).

    Article  CAS  Google Scholar 

  11. L.D. Wang, C.Y. Xing, X.L Hou, Y.M. Wu, J.F. Sun, and L.M. Wang: Microstructures and mechanical properties of as-cast Mg-5Y-3Nd-Zr-xGd (x=0, 2 and 4 wt.%) alloys. Mater. Sci. Eng., A 527, 1891 (2010).

    Article  Google Scholar 

  12. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch: Hardening precipitation in a Mg-4Y-3RE alloy. Acta Mater. 51, 5335 (2003).

    Article  CAS  Google Scholar 

  13. P.H. Fu, L.M. Peng, H.Y. Jiang, Z.Y. Zhang, and C.Q. Zhai: Fracture behavior and mechanical properties of Mg-4Y-2Nd-1Gd-0.4Zr(wt.%) alloy at room temperature. Mater. Sci. Eng., A 486, 572 (2008).

    Article  Google Scholar 

  14. T. Mohri, M. Mabuchi, N. Satio, and M. Nakamura: Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment. Mater. Sci. Eng., A 257, 287 (1998).

    Article  Google Scholar 

  15. X.Y. Fang, D.Q. Yi, J.F. Nie, X.J. Zhang, B. Wang, and L.R. Xiao: Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy. J. Alloys Compd. 470, 311 (2009).

    Article  CAS  Google Scholar 

  16. R.L. Xin, L. Li, K. Zeng, B. Song, and Q. Liu: Structural examination of aging precipitation in a Mg-Y-Nd alloy at different temperatures. Mater. Charact. 62, 535 (2011).

    Article  CAS  Google Scholar 

  17. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr. Mater. 53, 799 (2005).

    Article  CAS  Google Scholar 

  18. J.L. Wang, H.W. Dong, L.D. Wang, Y.M. Wu, and L.M. Wang: Effect of hot rolling on the microstructure and mechanical properties of Mg-5Al-0.3Mn-2Nd alloy. J. Alloys Compd. 507, 178 (2010).

    Article  CAS  Google Scholar 

  19. T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi: Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr. Mater. 51, 107 (2004).

    Article  CAS  Google Scholar 

  20. I.A. Anyanwu, S. Kamado, and Y. Kojima: Creep properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 42, 1206 (2001).

    Article  CAS  Google Scholar 

  21. K. Liu, J.H. Zhang, W. Sun, X. Qiu, H.Y. Lu, D.X. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng: Precipitates formed in a Mg-7Y-4Gd-0.5Zn-0.4Zr alloy during isothermal ageing at 250°C. Mater. Chem. Phys. 117, 107 (2009).

    Article  CAS  Google Scholar 

  22. X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, and J.F. Nie: Microstructure evolution in a Mg-15Gd-0.5Zr(wt.%) alloy during isothermal aging at 250°C. Mater. Sci. Eng., A 431, 322 (2006).

    Article  Google Scholar 

  23. M. Mabuchi and K. Higashi: Strengthening mechanisms of Mg-Si alloys. Acta Mater. 44, 4611 (1996).

    Article  CAS  Google Scholar 

  24. Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, and M.X. Liang: Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy. Mater. Sci. Eng., A 454–455, 274 (2007).

    Article  Google Scholar 

  25. J.F. Nie: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48, 1009 (2003).

    Article  CAS  Google Scholar 

  26. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie,and W.J. Ding: Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427, 316 (2007).

    Article  CAS  Google Scholar 

  27. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845 (2002).

    Article  CAS  Google Scholar 

  28. A. Jäger, P. Lukáč, V. Gärtnerová, J. Bohlen, and K.U. Kainer: Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. J Alloys Compd. 378, 184 (2004).

    Article  Google Scholar 

  29. S.B. Yi, S. Zaefferer, and H-G. Brokmeier: Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Mater. Sci. Eng., A 424, 275 (2006).

    Article  Google Scholar 

  30. J.C. Tan and M.J. Tan: Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater. Sci. Eng., A 339, 81 (2003).

    Article  Google Scholar 

  31. K-J. Li and Q-A. Li: Microstructure and superior mechanical properties of cast Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr alloy. Mater. Sci. Eng., A 528, 5453 (2011).

    Article  CAS  Google Scholar 

  32. K. Liu, L.L. Rokhlin, F.M. Elkin, D.X. Tang, and J. Meng: Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg-7Y-4Gd-1.5Zn-0.4Zr alloy. Mater. Sci. Eng., A 527, 828 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported partly by the Natural Science Foundation of China (Grant No. 51074186) and the Open-End Fund for the Valuable and Precision Instruments of Central South University. The authors would like to thank Professor Ding Daoyun for providing writing assistance to the article and the anonymous reviewers for supplying the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Liu, C., Xu, L. et al. Microstructure and mechanical properties of the hot-rolled Mg–Y–Nd–Zr alloy. Journal of Materials Research 28, 1386–1393 (2013). https://doi.org/10.1557/jmr.2013.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.109

Navigation