Skip to main content
Log in

Ice-templating, freeze casting: Beyond materials processing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ice templating is able to do much more than macroporous, cellular materials. The underlying phenomenon—the freezing of colloids—is ubiquitous, at a unique intersection of a variety of fields and domains, from materials science to physics, chemistry, biology, food engineering, and mathematics. In this review, I walk through the seemingly divergent domains in which the occurrence of freezing colloids can benefit from the work on ice templating, or which may provide additional understanding or inspiration for further development in materials science. This review does not intend to be extensive, but rather to illustrate the richness of this phenomenon and the obvious benefits of a pluridisciplinary approach for us as materials scientists, and for other scientists working in areas well outside the realms of materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. S. Deville: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155–169 (2008).

    CAS  Google Scholar 

  2. A. Lottermoser: Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen. Gesellschaft 41, 3976–3979 (1908).

    Google Scholar 

  3. W. Mahler and M.F. Bechtold: Freeze-formed silica fibres. Nature 285, 27–28 (1980).

    CAS  Google Scholar 

  4. H. Tong, I. Noda, and C.C. Gryte: Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym. Sci. 262, 589–595 (1984).

    CAS  Google Scholar 

  5. T. Fukasawa, M. Ando, T. Ohji, and S. Kanzaki: Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J. Am. Ceram. Soc. 84, 230–232 (2001).

    CAS  Google Scholar 

  6. T. Bartels-Rausch, V. Bergeron, J.H.E. Cartwright, R. Escribano, J.L. Finney, H. Grothe, P.J. Gutiérrez, J. Haapala, W.F. Kuhs, J.B.C. Pettersson, S.D. Price, C.I. Sainz-Díaz, D.J. Stokes, G. Strazzulla, E.S. Thomson, H. Trinks, and N. Uras-Aytemiz: Ice structures, patterns, and processes: A view across the ice-fields. Rev. Modern Phys. 84, 885–944 (2012).

    CAS  Google Scholar 

  7. M.C. Gutiérrez, M.L. Ferrer, and F. del Monte: Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634–648 (2008).

    Google Scholar 

  8. S. Deville: Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 3, 1913–1927 (2010).

    CAS  Google Scholar 

  9. U.G.K. Wegst, M. Schecter, A.E. Donius, and P.M. Hunger: Biomaterials by freeze casting. Philos. Trans. R. Soc. London, Ser. A 368, 2099–2121 (2010).

    CAS  Google Scholar 

  10. W.L. Li, K. Lu, and J.Y. Walz: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Inter. Mater. Rev. 57, 37–60 (2012).

    CAS  Google Scholar 

  11. S. Deville, E. Saiz, and A.P. Tomsia: Ice-templated porous alumina structures. Acta Mater. 55, 1965–1974 (2007).

    CAS  Google Scholar 

  12. K. Araki and J.W. Halloran: New freeze-casting technique for ceramics with sublimable vehicles. J. Am. Ceram. Soc. 87, 1859–1863 (2004).

    CAS  Google Scholar 

  13. A. Macchetta, I.G. Turner, and C.R. Bowen: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 1319–1327 (2009).

    CAS  Google Scholar 

  14. M.C. Gutiérrez, M.L. Ferrer, C.R. Mateo, and F. del Monte: Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25, 5509–5515 (2009).

    Google Scholar 

  15. X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang, Y. Long, X. Wang, Y. Guo, F. Xing, and J. Gao: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6, 1167–1177 (2010).

    CAS  Google Scholar 

  16. U. Soltmann: Freeze gelation: A new option for the production of biological ceramic composites (biocers). Mater. Lett. 57, 2861–2865 (2003).

    CAS  Google Scholar 

  17. J. Yue, B. Dong, and H. Wang: Porous Si3N4 fabricated by phase separation method using benzoic acid as pore-forming agent. J. Am. Ceram. Soc. 94, 1989–1991 (2011).

    CAS  Google Scholar 

  18. L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, and E.P. Giannelis: Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011).

    CAS  Google Scholar 

  19. X. Zhang, C. Li, and Y. Luo: Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS. Langmuir 27, 1915–1923 (2011).

    CAS  Google Scholar 

  20. Z. He, J. Liu, Y. Qiao, C.M. Li, and T.T.Y. Tan: Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. 12, 4738–4741 (2012).

    CAS  Google Scholar 

  21. K. Hamamoto, M. Fukushima, M. Mamiya, Y. Yoshizawa, J. Akimoto, T. Suzuki, and Y. Fujishiro: Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics 225, 560–563 (2012).

    CAS  Google Scholar 

  22. J.C.T. Kao and A.A. Golovin: Particle capture in binary solidification. J. Fluid Mech. 625, 299 (2009).

    CAS  Google Scholar 

  23. R. Asthana and S.N. Tewari: Review the engulfment of foreign particles by a freezing interface. J. Mater. Sci. 28, 5414–5425 (1993).

    CAS  Google Scholar 

  24. A.W. Rempel and M.G. Worster: The interaction between a particle and an advancing solidification front. J. Crystal Growth 205, 427–440 (1999).

    CAS  Google Scholar 

  25. G. Lipp and C. Körber: On the engulfment of spherical particles by a moving ice — liquid interface. J. Crystal Growth 130, 475–489 (1993).

    CAS  Google Scholar 

  26. G. Lipp, C. Körber, and G. Rau: Critical growth rates of advancing ice-water interfaces for particle encapsulation. J. Crystal Growth 99, 206–210 (1990).

    CAS  Google Scholar 

  27. M.S. Park, A.A. Golovin, and S.H. Davis: The encapsulation of particles and bubbles by an advancing solidification front. J. Fluid Mech. 560, 415 (2006).

    Google Scholar 

  28. J-W. Kim, K. Tazumi, R. Okaji, and M. Ohshima: Honeycomb monolith-structured silica with highly ordered, three-dimensionally interconnected macroporous walls. Chem. Mater. 21, 3476–3478 (2009).

    CAS  Google Scholar 

  29. H. Zhang, J. Long, and A.I. Cooper: Aligned porous materials by directional freezing of solutions in liquid CO2. J. Am. Chem. Soc. 127, 13482–13483 (2005).

    CAS  Google Scholar 

  30. T. Maki and S. Sakka: Formation of alumina fibers by unidirectional freezing of gel. J. Non-Cryst. Solids 82, 239–245 (1986).

    CAS  Google Scholar 

  31. S.R. Mukai, H. Nishihara, and H. Tamon: Porous microfibers and microhoneycombs synthesized by ice templating. Catal. Surv. Asia 10, 161–171 (2006).

    CAS  Google Scholar 

  32. J. Yan, Z. Wu, and L. Tan: Self-assembly of polystyrene nanoparticles induced by ice templating. in Proceedings of SPIE, edited by J. Leng, A.K. Asundi, and W. Ecke (Second International Conference on Smart Materials and Nanotechnology in Engineering, SPIE, Weihai, China, 2009), p. 749375.

  33. S.R. Mukai, K. Mitani, S. Murata, H. Nishihara, and H. Tamon: Assembling of nanoparticles using ice crystals. Mater. Chem. Phys. 123, 347–350 (2010).

    CAS  Google Scholar 

  34. Q. Shi, Z. An, C-K. Tsung, H. Liang, N. Zheng, C.J. Hawker, and G.D. Stucky: Ice-templating of core/shell microgel fibers through “Bricks-and-Mortar” assembly. Adv. Mater. 19, 4539–4543 (2007).

    CAS  Google Scholar 

  35. H. Zhang, D. Edgar, P. Murray, A. Rak-Raszewska, L. Glennon-Alty, and A.I. Cooper: Synthesis of porous microparticles with aligned porosity. Adv. Funct. Mater. 18, 222–228 (2008).

    CAS  Google Scholar 

  36. A. Witte and J. Ulrich: An alternative technology to form tablets. Chem. Eng. Technol. 33, 757–761 (2010).

    CAS  Google Scholar 

  37. N. Pachulski and J. Ulrich: Production of tablet-like solid bodies without pressure by sol-gel processes. Lett. Drug Des. Discovery 4, 78–81 (2007).

    CAS  Google Scholar 

  38. A. Szepes, J. Ulrich, Z. Farkas, J. Kovács, and P. Szabó-Révész: Freeze-casting technique in the development of solid drug delivery systems. Chem. Eng. Process 46, 230–238 (2007).

    CAS  Google Scholar 

  39. L. Ma, A. Jin, Z. Xie, and W. Lin: Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal-organic frameworks. Angew. Chem. 48, 9905–9908 (2009).

    CAS  Google Scholar 

  40. C. Mu, Y. Su, M. Sun, W. Chen, and Z. Jiang: Fabrication of microporous membranes by a feasible freeze method. J. Membr. Sci. 361, 15–21 (2010).

    CAS  Google Scholar 

  41. A. Li, A. Thornton, B. Deuser, and J. Watts: Freeze-form extrusion fabrication of functionally graded material composites using zirconium carbide and tungsten, in Proceedings of SFF Symposium, edited by J. Beaman, D. Bourell, R. Crawford, H. Marcus, and C.C. Seepersad (Twenty Third Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, The University of Texas at Austin, Austin, Texas, 2012), p. 467.

  42. T. Huang, M. Mason, G. Hilmas, and M.C. Leu: Freeze-form extrusion fabrication of ceramic parts. Virtual Phys. Prototyp. 1, 93–100 (2006).

    Google Scholar 

  43. X. Zhao, R.G. Landers, and M.C. Leu: Adaptive extrusion force control of freeze-form extrusion fabrication processes. J. Manuf. Sci. Eng. 132, 064504 (2010).

    Google Scholar 

  44. J.E. Smay, J. Cesarano, and J.A. Lewis: Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 5429–5437 (2002).

    CAS  Google Scholar 

  45. M. Nakata, K. Tanihata, S. Yamaguchi, and K. Suganuma: Fabrication of porous alumina sintered bodies by a Gelate-freezing method. J. Ceram. Soc. Jpn. 113, 712–715 (2005).

    CAS  Google Scholar 

  46. L. Qian, A. Ahmed, A. Foster, S.P. Rannard, A.I. Cooper, and H. Zhang: Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J. Mater. Chem. 19, 5212 (2009).

    CAS  Google Scholar 

  47. H. Schoof, J. Apel, I. Heschel, and G. Rau: Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352–357 (2001).

    CAS  Google Scholar 

  48. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    CAS  Google Scholar 

  49. T. Waschkies, R. Oberacker, and M.J. Hoffmann: Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route. J. Am. Ceram. Soc. 92, 79–84 (2009).

    Google Scholar 

  50. H. Nishihara, S. Iwamura, and T. Kyotani: Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 18, 3662–3670 (2008).

    CAS  Google Scholar 

  51. Y. Zhang, L. Hu, and J. Han: Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. J. Am. Ceram. Soc. 92, 1874–1876 (2009).

    CAS  Google Scholar 

  52. Y.F. Tang, K. Zhao, J-Q. Wei, and Y.S. Qin: Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J. Eur. Ceram. Soc. 30, 1963–1965 (2010).

    CAS  Google Scholar 

  53. M.M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, M.A. Meyers, and J. McKittrick: Magnetic freeze casting inspired by nature. Mater. Sci. Eng., A 556, 741–750 (2012).

    CAS  Google Scholar 

  54. J-W. Kim, K. Taki, S. Nagamine, and M. Ohshima: Preparation of porous poly(L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Langmuir 25, 5304–5312 (2009).

    CAS  Google Scholar 

  55. R. Okaji, S. Sakashita, K. Tazumi, K. Taki, S. Nagamine, and M. Ohshima: Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. J. Mater. Sci. 48, 2038–2045 (2012).

    Google Scholar 

  56. E. Münch, E. Saiz, A.P. Tomsia, and S. Deville: Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92, 1534–1539 (2009).

    Google Scholar 

  57. K. Sangwal: Additives and Crystallization Processes (John Wiley & Sons, Ltd, Chichester, UK, 2007).

    Google Scholar 

  58. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions-part I: Initial instants. J. Am. Ceram. Soc. 92, 2489–2496 (2009).

    CAS  Google Scholar 

  59. S.W. Sofie: Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process. J. Am. Ceram. Soc. 90, 2024–2031 (2007).

    CAS  Google Scholar 

  60. Y. Chen, J. Bunch, T. Li, Z. Mao, and F. Chen: Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J. Power Sources 213, 93–99 (2012).

    CAS  Google Scholar 

  61. S. Hostler, A. Abramson, M.D. Gawryla, S. Bandi, and D.A. Schiraldi: Thermal conductivity of a clay-based aerogel. Int. J. Heat Mass Transfer 52, 665–669 (2009).

    CAS  Google Scholar 

  62. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, and P. Fratzl: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    CAS  Google Scholar 

  63. M.A. Meyers, P-Y. Chen, A.Y-M. Lin, and Y. Seki: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    CAS  Google Scholar 

  64. K. Zuo, Y-P. Zeng, and D. Jiang: Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater. Sci. Eng., C 30, 283–287 (2010).

    CAS  Google Scholar 

  65. Y. Zhang, K. Zuo, and Y-P. Zeng: Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceram. Int. 35, 2151–2154 (2009).

    CAS  Google Scholar 

  66. F. Ye, J. Zhang, H. Zhang, and L. Liu: Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. J. Alloys Compd. 506, 423–427 (2010).

    CAS  Google Scholar 

  67. C.M. Pekor, P. Kisa, and I. Nettleship: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91, 3185–3190 (2008).

    CAS  Google Scholar 

  68. S.L. Sobolev: Rapid colloidal solidifications under local nonequilibrium diffusion conditions. Phys. Lett. A 1, 1–4 (2012).

    Google Scholar 

  69. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particles suspensions. Part II: Steady state. J. Am. Ceram. Soc. 92, 2497–2503 (2009).

    CAS  Google Scholar 

  70. J.A.W. Elliott and S.S.L. Peppin: Particle trapping and banding in rapid colloidal solidification. Phys. Rev. Lett. 107, 168301 (2011).

    CAS  Google Scholar 

  71. A. Lasalle, C. Guizard, E. Maire, J. Adrien, and S. Deville: Particle redistribution and structural defect development during ice templating. Acta Mater. 60, 4594–4603 (2012).

    CAS  Google Scholar 

  72. A.R. Studart, J. Studer, L. Xu, K. Yoon, H.C. Shum, and D.A. Weitz: Hierarchical porous materials made by drying complex suspensions. Langmuir 27, 955–964 (2011).

    CAS  Google Scholar 

  73. L. Mishchenko, B.D. Hatton, M. Kolle, and J. Aizenberg: Patterning hierarchy in direct and inverse opal crystals. Small 8, 1904–1911 (2012).

    CAS  Google Scholar 

  74. K. Araki and J.W. Halloran: Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J. Am. Ceram. Soc. 88, 1108–1114 (2005).

    CAS  Google Scholar 

  75. S. Deville, C. Viazzi, J. Leloup, A. Lasalle, C. Guizard, E. Maire, J. Adrien, and L. Gremillard: Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS One 6, e26474 (2011).

    CAS  Google Scholar 

  76. P.M. Hunger, A.E. Donius, and U.G.K. Wegst: Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013).

    CAS  Google Scholar 

  77. S.A. Barr and E. Luijten: Structural properties of materials created through freeze casting. Acta Mater. 58, 709–715 (2010).

    CAS  Google Scholar 

  78. X. Shen, L. Chen, D. Li, L. Zhu, H. Wang, C. Liu, Y. Wang, Q. Xiong, and H. Chen: Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5, 8426–8433 (2011).

    CAS  Google Scholar 

  79. H.E. Romeo, C.E. Hoppe, M.A. López-Quintela, R.J.J. Williams, Y. Minaberry, and M. Jobbágy: Directional freezing of liquid crystalline systems: From silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. J. Mater. Chem. 22, 9195 (2012).

    CAS  Google Scholar 

  80. P.M. Hunger, A.E. Donius, and U.G.K. Wegst: Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomater. 9(5), (2013).

    Google Scholar 

  81. J. Lee and Y. Deng: The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7, 6034 (2011).

    CAS  Google Scholar 

  82. J. Henzie, M. Grünwald, A. Widmer-Cooper, P.L. Geissler, and P. Yang: Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012).

    CAS  Google Scholar 

  83. J.N. Israelachvili, D.J. Mitchell, and B.W. Ninham: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).

    CAS  Google Scholar 

  84. C.J. Brinker, Y. Lu, A. Sellinger, and H. Fan: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    CAS  Google Scholar 

  85. I. Amirouche, M. Klotz, C. Viazzi, S. Deville, and C. Guizard: Unexpected self-assembly of amphiphiles below room temperature: A route to novel hierarchical mesoporous materials. Chem. Mater. (submitted).

  86. R. Style, S.S.L. Peppin, A. Cocks, and J.S. Wettlaufer: Ice-lens formation and geometrical supercooling in soils and other colloidal materials. Phys. Rev. E 84, 1–12 (2011).

    Google Scholar 

  87. R.W. Style and S.S.L. Peppin: The kinetics of ice-lens growth in porous media. J. Fluid Mech. 692, 482–498 (2012).

    CAS  Google Scholar 

  88. E. Landi, F. Valentini, and A. Tampieri: Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater. 4, 1620–1626 (2008).

    CAS  Google Scholar 

  89. Q. Fu, M.N. Rahaman, F. Dogan, and B.S. Bal: Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J. Biomed. Mater. Res. Part B 86, 514–522 (2008).

    Google Scholar 

  90. A.M. Anderson and M.G. Worster: Periodic ice banding in freezing colloidal dispersions. Langmuir 28, 16512–16523 (2012).

    CAS  Google Scholar 

  91. D. Thies-Weesie and A. Philipse: Liquid permeation of bidisperse colloidal hard-sphere packings and the Kozeny-Carman scaling relation. J. Colloid Interface Sci. 162, 470–480 (1994).

    CAS  Google Scholar 

  92. M. Spannuth, S. Mochrie, S.S.L. Peppin, and J.S. Wettlaufer: Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering. Phys. Rev. E 83, 32 (2011).

    Google Scholar 

  93. N.O. Shanti, K. Araki, and J.W. Halloran: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 2444–2447 (2006).

    CAS  Google Scholar 

  94. S. Deville and G. Bernard-Granger: Influence of surface tension, osmotic pressure and pores morphology on the densification of ice-templated ceramics. J. Eur. Ceram. Soc. 31, 983–987 (2011).

    CAS  Google Scholar 

  95. J. Zheng, D. Salamon, L. Lefferts, M. Wessling, and L. Winnubst: Ceramic microfluidic monoliths by ice templating. Microporous Mesoporous Mater. 134, 216–219 (2010).

    CAS  Google Scholar 

  96. R.A. Lake and L.E. Lewis: Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583–597 (1970).

    CAS  Google Scholar 

  97. M.G. Worster and J.S. Wettlaufer: Natural convection, solute trapping, and channel formation during solidification of saltwater. J. Phys. Chem. B 101, 6132–6136 (1997).

    CAS  Google Scholar 

  98. E. C. Hunke, D. Notz, A.K. Turner, and M. Vancoppenolle: The multiphase physics of sea ice: A review. Cryosphere Discuss. 5, 1949–1993 (2011).

    Google Scholar 

  99. C. Petrich and H. Eicken: In Sea Ice (Wiley-Blackwell, Malden, MA, 2008), pp. 23–78.

    Google Scholar 

  100. J.S. Wettlaufer and M.G. Worster: Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291–316 (1997).

    CAS  Google Scholar 

  101. “Brinicle” ice finger of death filmed in Antarctic. http://www.bbc.co.uk/nature/15835017 (accessed January 22, 2013).

  102. S.S.L. Peppin, J.A.W. Elliott, and M.G. Worster: Solidification of colloidal suspensions. J. Fluid Mech. 554, 147 (2006).

    Google Scholar 

  103. S.S.L. Peppin, A. Majumdar, and J.S. Wettlaufer: Morphological instability of a non-equilibrium ice-colloid interface. Proc. R. Soc. London, Ser. A 466, 177–194 (2009).

    Google Scholar 

  104. F.G.J. Perey and E.R. Pounder: Crystal orientation in ice sheets. Canadian J. Phys. 36, 494–502 (1958).

    CAS  Google Scholar 

  105. B. Michel and R.O. Ramseier: Classification of river and lake ice. Canadian Geotech. J. 8, 36–45 (1971).

    Google Scholar 

  106. A.J. Gow: Orientation textures in ice sheets of quietly frozen lakes. J. Crystal Growth 74, 247–258 (1986).

    CAS  Google Scholar 

  107. M.O. Jeffries, W.F. Weeks, R. Shaw, and K. Morris: Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. J. Glaciol. 39, 223–238 (1993).

    Google Scholar 

  108. D.M. Cole: The microstructure of ice and its influence on mechanical properties. Eng. Fracture Mech. 68, 1797–1822 (2001).

    Google Scholar 

  109. M. Müller-Stoffels, P.J. Langhorne, C. Petrich, and E.W. Kempema: Preferred crystal orientation in fresh water ice. Cold Reg. Sci. Technol. 56, 1–9 (2009).

    Google Scholar 

  110. S. Maus: The planar-cellular transition during freezing of natural waters, in Physics and Chemistry of Ice: Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, Bremerhaven, Germany 2006; edited by W.F. Kuhs (Royal Society of Chemistry, Cambridge, UK, 2007), pp. 383–389.

  111. Y. Kawano and T. Ohashi: A mesoscopic numerical study of sea ice crystal growth and texture development. Cold Reg. Sci. Technol. 57, 39–48 (2009).

    Google Scholar 

  112. H. Eicken, I. Weissenberger, J. Bussmann, J. Freitag, W. Schuster, F.V. Delgado, K. Evers, P. Jochmann, C. Krembs, R. Gradinger, F. Lindemann, F. Cottier, R. Hall, P. Wadhams, M. Reisemann, H. Kuosa, J. Ikävalko, and G.H. Leonard: Ice tank studies of physical and biological sea-ice processes, in Ice in Surface Waters, edited by T. Shen (Proceedings of the 14th International Symposium on Ice, Potsdam, New York, 1998), p. 363.

  113. M.E. Launey, E. Munch, D.H. Alsem, H.B. Barth, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009).

    CAS  Google Scholar 

  114. K. Storey and J. Storey: Natural freezing survival in animals. Annu. Rev. Ecol. Evol. Syst. 27, 365–386 (1996).

    Google Scholar 

  115. R.V. Devireddy, P.R. Barratt, K.B. Storey, and J.C. Bischof: Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. Cryobiology 38, 327–338 (1999).

    CAS  Google Scholar 

  116. Y. Zhang, L. Hu, J. Han, and Z. Jiang: Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceram. Int. 36, 617–621 (2010).

    CAS  Google Scholar 

  117. F. Franks: Nucleation of ice and its management in ecosystems. Philos. Trans. R. Soc. London, Ser. A 361, 557–574 (2003).

    CAS  Google Scholar 

  118. N. Amornwittawat, S. Wang, J.G. Duman, and X. Wen: Polycarboxylates enhance beetle antifreeze protein activity. Biochim. Biophys. Acta 1784, 1942–1948 (2008).

    CAS  Google Scholar 

  119. A.J. Scotter, C.B. Marshall, L.A. Graham, J.A. Gilbert, C.P. Garnham, and P.L. Davies: The basis for hyperactivity of antifreeze proteins. Cryobiology 53, 229–239 (2006).

    CAS  Google Scholar 

  120. P.L. Davies, J. Baardsnes, M.J. Kuiper, and V.K. Walker: Structure and function of antifreeze proteins. Philos. Trans. R. Soc. London, Ser. B 357, 927–935 (2002).

    CAS  Google Scholar 

  121. K. Meister, S. Ebbinghaus, Y. Xu, J.G. Duman, A. DeVries, M. Gruebele, D.M. Leitner, and M. Havenith: Long-range protein-water dynamics in hyperactive insect antifreeze proteins. PNAS 110, 1617–1622 (2013).

    CAS  Google Scholar 

  122. B. Wowk, E. Leitl, C.M. Rasch, N. Mesbah-Karimi, S.B. Harris, and G.M. Fahy: Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40, 228–236 (2000).

    CAS  Google Scholar 

  123. M.I. Gibson, C.A. Barker, S.G. Spain, L. Albertin, and N.R. Cameron: Inhibition of ice crystal growth by synthetic glycopolymers: Implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10, 328–333 (2009).

    CAS  Google Scholar 

  124. M.I. Gibson: Slowing the growth of ice with synthetic macromolecules: Beyond antifreeze(glyco) proteins. Polymer Chem. 1, 1141 (2010).

    CAS  Google Scholar 

  125. T. Inada and P. Modak: Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries. Chem. Eng. Sci. 61, 3149–3158 (2006).

    CAS  Google Scholar 

  126. Y. Mastai, J. Rudloff, H. Cölfen, and M. Antonietti: Control over the structure of ice and water by block copolymer additives. Chemphyschem 3, 119–123 (2002).

    CAS  Google Scholar 

  127. A. Chakrabartty, D.S. Yang, and C.L. Hew: Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides. J. Bio. Chem. 264, 11313–11316 (1989).

    CAS  Google Scholar 

  128. S. Deville, C. Viazzi, and C. Guizard: Ice-structuring mechanism for zirconium acetate. Langmuir 28, 14892–14898 (2012).

    CAS  Google Scholar 

  129. O. Mizrahy, M. Bar-Dolev, S. Guy, and I. Braslavsky: Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS One 8, e59540 (2013).

    CAS  Google Scholar 

  130. C. Budke and T. Koop: Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). Chemphyschem 7, 2601–2606 (2006).

    CAS  Google Scholar 

  131. M.A. Azouni and P. Casses: Thermophysical properties effects on segregation during solidification. Adv. Colloid Interface Sci. 75, 83–106 (1998).

    CAS  Google Scholar 

  132. T. Tao, X.F. Peng, and D.J. Lee: Force of a gas bubble on a foreign particle in front of a freezing interface. J. Colloid Interface Sci. 280, 409–416 (2004).

    CAS  Google Scholar 

  133. H. Ishiguro and B. Rubinsky: Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31, 483–500 (1994).

    CAS  Google Scholar 

  134. A. Chang, J.A. Dantzig, B.T. Darr, and A. Hubel: Modeling the interaction of biological cells with a solidifying interface. J. Comput. Phys. 226, 1808–1829 (2007).

    CAS  Google Scholar 

  135. J. Attwater, A. Wochner, V.B. Pinheiro, A. Coulson, and P. Holliger: Ice as a protocellular medium for RNA replication. Nat. Commun. 1, 1–8 (2010).

    Google Scholar 

  136. R. Liu and L.E. Orgel: Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J. Am. Chem. Soc. 119, 4791–4792 (1997).

    CAS  Google Scholar 

  137. P-A. Monnard, A. Kanavarioti, and D.W. Deamer: Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 125, 13734–13740 (2003).

    CAS  Google Scholar 

  138. J.P. Ferris: in The Molecular Origins of Life (Cambridge University Press, Cambridge, 1998), pp. 255–268.

    Google Scholar 

  139. J.D. Graham and J.T. Roberts: Chemical reactions of organic molecules adsorbed at ice: 2. Chloride substitution in 2-methyl-2-propanol. Langmuir 16, 3244–3248 (2000).

    CAS  Google Scholar 

  140. H. Trinks, W. Schröder, and C.K. Bierbricher: Sea ice as a promoter of the emergence of first life. Origins Life Evol. Biosphere 35, 429–445 (2005).

    CAS  Google Scholar 

  141. K.J. Zahnle and J.C.G. Walker: The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280 (1982).

    CAS  Google Scholar 

  142. D.D. Wynn-Williams, N.A. Cabrol, E.A. Grin, R.M. Haberle, and C.R. Stoker: Brines in seepage channels as eluants for subsurface relict biomolecules on Mars? Astrobiology 1, 165–184 (2001).

    CAS  Google Scholar 

  143. P. Ball: Cold comfort. Nat. Mater. 5, 173–174 (2006).

    Google Scholar 

  144. K. Yoshizawa, T. Okuzono, T. Koga, T. Taniji, and J. Yamanaka: Exclusion of impurity particles during grain growth in charged colloidal crystals. Langmuir 27, 13420–13427 (2011).

    CAS  Google Scholar 

  145. V.W.A. de Villeneuve, R.P.A. Dullens, D.G.A.L. Aarts, E. Groeneveld, J.H. Scherff, W.K. Kegel, and H.N.W. Lekkerkerker: Colloidal hard-sphere crystal growth frustrated by large spherical impurities. Science 309, 1231–1233 (2005).

    Google Scholar 

  146. J.S. Wettlaufer and M.G. Worster: Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427–452 (2006).

    Google Scholar 

  147. E. Workman, F. Truby, and W. Drost-Hansen: Electrical conduction in halide-contaminated ice. Phys. Rev. 94, 1073–1073 (1954).

    CAS  Google Scholar 

  148. J.C. Decroly, H. Gränicher, and C. Jaccard: Caractère de la conductivité électrique de la glace. Helv. Phys. Acta 30, 465–467 (1957).

    CAS  Google Scholar 

  149. B. Bullemer, H. Engelhardt, and N. Riehl: Protonic conductivity of ice I. High temperature region, in Proceedings of the International Symposium on Physics of Ice, Munich, Germany, 1968; edited by N. Riehl, B. Bullemer, and H. Engelhardt (Plenum Press, New York, 1969), pp. 416–429.

  150. T. Waschkies, R. Oberacker, and M.J. Hoffmann: Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 5135–5145 (2011).

    CAS  Google Scholar 

  151. H. Ma, Y. Gao, Y. Li, J. Gong, X. Li, B. Fan, and Y. Deng: Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. J. Phys. Chem. C 113, 9047–9052 (2009).

    CAS  Google Scholar 

  152. S. Barg, M.D.M. Innocentini, R.V. Meloni, W.S. Chacon, H. Wang, D. Koch, and G. Grathwohl: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membrane Sci. 383, 35–43 (2011).

    CAS  Google Scholar 

  153. T.S. Huang, M.N. Rahaman, N.D. Doiphode, M.C. Leu, B.S. Bal, D.E. Day, and X. Liu: Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Mater. Sci. Eng., C 31, 1482–1489 (2011).

    CAS  Google Scholar 

  154. K.G. Libbrecht: The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).

    Google Scholar 

  155. A. Bogner: unpublished results.

  156. Frost heave. http://classes.engr.oregonstate.edu/cce/winter2012/ce492/Modules/04_design_parameters/04-4_body.htm (accessed January 20, 2013).

  157. A. Assur: Composition of Sea Ice and its Tensile Strength in Proceedings on the conference Arctic Sea Ice, Easton Maryland, 1958. (National Academy of Science and National Research Council, Washington, DC, 1960), pp. 44.

  158. CC-BY 2.0 license: http://creativecommons.org/licenses/by/2.0/deed.fr (accessed January 23, 2013).

  159. R. Peltier, C.W. Evans, A.L. DeVries, M.A. Brimble, A.J. Dingley, and D.E. Williams: Growth habit modification of ice crystals using antifreeze glycoprotein (AFGP) analogues. Cryst. Growth Des. 10, 5066–5077 (2010).

    CAS  Google Scholar 

  160. S.P. Graether, M.J. Kuiper, V.K. Walker, Z. Jia, B.D. Sykes, and P.L. Davies: β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 46, 325–328 (2000).

    Google Scholar 

  161. M. Bar, Y. Celik, D. Fass, and I. Braslavsky: Interactions of β-helical antifreeze protein mutants with ice. Cryst. Growth Des. 8, 2954–2963 (2008).

    CAS  Google Scholar 

  162. H. Trinks, W. Schröder, and C.K. Biebricher: Ice and the origin of life. Origins Life Evol. Biosphere 35, 429–445 (2005).

    CAS  Google Scholar 

  163. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55, 6208–6218 (2007).

    CAS  Google Scholar 

Download references

Acknowledgment

I am indebted to Adam Stevenson for his comments, suggestions, and corrections on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Deville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deville, S. Ice-templating, freeze casting: Beyond materials processing. Journal of Materials Research 28, 2202–2219 (2013). https://doi.org/10.1557/jmr.2013.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.105

Navigation