Skip to main content

Advertisement

Log in

Nanocomposite stability in Fe-, Co-, and Mn-based perovskite/spinel systems

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fabrication of thin film nanocomposites via decomposition and self-assembly from the vapor phase is a promising path for cost-effective fabrication of multifunctional materials. In particular, oxides as a new class of energy materials allow for rich functionalities, e.g., by combining p- and n-doped systems in catalytic or light harvesting units. Combining A-site doped perovskites ABO3 with CoFe2O4 spinel, we have investigated thin film phase composition and nanocomposite morphology in the pseudobinary system La0.6Sr0.4BO3–CoFe2O4 for B = Fe, Co, and Mn. We observe formation of an epitaxial two-phase nanocomposite for B = Fe, i.e., the coexistence of La0.6Sr0.4FeO3 and CoFe2O4. In contrast, for B = Co or Mn nanocomposites are formed, where perovskite La0.6Sr0.4BO3 solid solutions coexists with Co-rich spinel and periclase phases. We derive conclusions for the preparation of perovskite-spinel nanocomposites with well-designed doping levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE I.
FIG. 8.

Similar content being viewed by others

References

  1. M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  CAS  Google Scholar 

  2. C. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  3. F. Yang, M. Shtein, and S.R. Forrest: Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mater. 4, 37 (2005).

    Article  Google Scholar 

  4. J. Yoon, S. Cho, J. Kim, J. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, and H. Wang: Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).

    Article  CAS  Google Scholar 

  5. J.L. MacManus-Driscoll: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).

    Article  CAS  Google Scholar 

  6. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, and Q. Jia: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).

    Article  CAS  Google Scholar 

  7. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).

    Article  CAS  Google Scholar 

  8. F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. Schlom, Y. Suzuki, and R. Ramesh: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).

    Article  CAS  Google Scholar 

  9. Q. Zhan, R. Yu, S.P. Crane, H. Zheng, C. Kisielowski, and R. Ramesh: Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).

    Article  Google Scholar 

  10. Y. Tokura: Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, Amsterdam, 2000).

    Book  Google Scholar 

  11. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura: Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689 (1996).

    Article  CAS  Google Scholar 

  12. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).

    Article  CAS  Google Scholar 

  13. V.S. Zakhvalinskii, R. Laiho, A.V. Lashkul, K.G. Lisunov, E. Lähderanta, Yu.S. Nekrasova, and P.A. Petrenko: Hopping conductivity of La1-xSrxMn1-yFeyO3. J. Phys. Conf. Ser. 303, 012066 (2011).

    Article  Google Scholar 

  14. G.H. Jonker: Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9, 165 (1959).

    Article  CAS  Google Scholar 

  15. I.C. Man, H-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, and J. Rossmeisl: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2, 1159 (2011).

    Article  Google Scholar 

  16. B.D. Roiter and A.E. Paladino: Phase equilibria in the ferrite region of the system Fe-Co-O. J. Am. Ceram. Soc. 45, 128 (1962).

    Article  CAS  Google Scholar 

  17. A-K. Axelsson, F. Aguesse, L. Spillane, M. Valant, D.W. McComb, and N.McN. Alford: Quantitative strain analysis and growth mode of pulsed laser deposited epitaxial CoFe2O4 thin films. Acta Mater. 59, 514 (2011).

    Article  CAS  Google Scholar 

  18. K.J. Kim, H.K. Kim, Y.R. Park, and J.Y. Park: Effects of Mn substitution of Co and Fe in spinel CoFe2O4 thin films. J. Magn. Magn. Mater. 304, e106 (2006).

    Article  CAS  Google Scholar 

  19. O. Kubaschewski, C.B. Alcock, and P.J. Spencer: Materials Thermochemistry (Pergamon Press, New York, 1993).

    Google Scholar 

  20. A. Navrotski and O.J. Kleppa: Thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem. 30, 479 (1968).

    Article  Google Scholar 

  21. F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, M. Mogensen, and J. Rossmeisl: Trends in stability of perovskite oxides. Angew. Chem. Int. Ed. 49, 7699 (2010).

    Article  CAS  Google Scholar 

  22. J. Cheng and A. Navrotsky: Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni). J. Mater. Res. 20, 191 (2005).

    Article  CAS  Google Scholar 

  23. I-H. Jung, S.A. Decterov, A.P. Pelton, H-M. Kim, and Y-B. Kang: Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater. 52, 507 (2004).

    Article  CAS  Google Scholar 

  24. E.A. Filonova, A.N. Demina, E.A. Kleibaum, L.Y. Gavrilova, and A.N. Petrov: Phase equilibria in the system LaMnO3+d–SrMnO3–LaFeO3–SrFeO3–d. Inorg. Mater. 42, 443 (2006).

    Article  CAS  Google Scholar 

  25. T.V. Aksenova, M.V. Anan’ev, L.Y. Gavrilova, and V.A. Cherepanov: Phase equilibria and crystal structures of solid solutions in the system LaCoO3–d–SrCoO2.5±d–SrFeO3–d–LaFeO3–d. Inorg. Mater. 43, 296 (2007).

    Article  CAS  Google Scholar 

  26. R. Subramanian and R. Dieckmann: Limits of thermodynamic stability of cobalt-iron-manganese mixed oxides at 1200 °C. J. Am. Ceram. Soc. 75, 382 (1992).

    Article  CAS  Google Scholar 

  27. A.R. Kaul, O.Y. Gorbenko, and A.A. Kamenev: The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev. 73, 861 (2004).

    Article  CAS  Google Scholar 

  28. H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M.P. Cruz, L-Q. Chen, U. Dahmen, and R. Ramesh: Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).

    Article  CAS  Google Scholar 

  29. V.A. Shchukin and D. Bimberg: Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999).

    Article  CAS  Google Scholar 

  30. Z. Li, E.S. Fisher, J.Z. Liu, and M.V. Nevitt: Single-crystal elastic constants of Co-Al and Co-Fe spinels. J. Mater. Sci. 26, 2621 (1991).

    Article  CAS  Google Scholar 

  31. Y. Sumino, M. Kumazwa, O. Nishizawa, and W. Pluschkell: The elastic constants of single crystal Fe1-xO, MnO and CoO and the elasticity of stoichiometric magnesiowustite. J. Phys. Earth 28, 475 (1980).

    Article  CAS  Google Scholar 

  32. B. Varghese, Y. Zhang, L. Dai, V.B.C. Tan, C.T. Lim, and C-H. Sow: Structure-mechanical property of individual cobalt oxide nanowires. Nano Lett. 8, 3226 (2008).

    Article  CAS  Google Scholar 

  33. N. Orlovskaya, H. Anderson, M. Brodnikovskyy, M. Lugovy, and M.J. Reece: Inelastic deformation behavior of La0.6Sr0.4FeO3 perovskite. J. Appl. Phys. 100, 026102 (2006).

    Article  Google Scholar 

  34. V. Rajendran, S.M. Kumaran, V. Sivasubramanian, T. Jayakumar, and B. Raj: Anomalies in elastic moduli and ultrasonic attenuation near ferromagnetic transition temperature in La0.67Sr0.33MnO3 perovskite. Phys. Status Solidi A 195, 350 (2003).

    Article  CAS  Google Scholar 

  35. D.J. Srolovitz: On the stability of surfaces of stressed solids. Acta Metall. Mater. 37, 621 (1989).

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the Deutsche Forschungs-gemeinschaft under grant numbers JO 348/8 and SFB 602, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, J., Schnittger, S., Norpoth, J. et al. Nanocomposite stability in Fe-, Co-, and Mn-based perovskite/spinel systems. Journal of Materials Research 27, 1462–1470 (2012). https://doi.org/10.1557/jmr.2012.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.84

Navigation