Skip to main content
Log in

A Q-DLTS investigation of aluminum nitride surface termination

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A single crystal aluminum nitride (AlN) wafer surface was investigated via the use of a novel software-based, Charge-based Deep Level Transient Spectroscopy (Q-DLTS) apparatus, both before and after surface bond termination with hydrogen plasma. The sample was cleaned and metalized with a thermoresistive evaporator to create electrical contacts and then annealed in a helium atmosphere at 825 °C. Current-voltage (I-V) measurements were performed to investigate the nature of the metal/substrate contacts. The effect of hydrogen termination was investigated and Arrhenius plots were produced from Q-DLTS spectra at temperatures ranging from −15.9 °C to 136.0 °C. Activation energies and capture cross-section values were calculated from the Q-DLTS spectra for traps existing in the AlN substrate surface. Prior to hydrogen termination, four charge traps were observed with activation energies of 0.31 eV, 0.61 eV, 0.56 eV, and 0.18 eV and capture cross sections 5.6 × 10−21 cm2, 1.1 × 10−16 cm2, 3.5 × 10−19 cm2, and 1.3 × 10−21 cm2, respectively After hydrogen termination, five charge traps were observed with activation energies of 0.31 eV, 0.61 eV, 0.52 eV, 0.19 eV, and 0.40 eV, and capture cross sections 4.9 × 10−21 cm2, 1.3 × 10−16 cm2, 2.9 × 10−19 cm2, 3.1 × 10−19 cm2, and 4.7 × 10−19 cm2, respectively. Four of these peaks after termination are matched with the peaks prior to termination and the fifth peak appears to be the result of the hydrogen termination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.

Similar content being viewed by others

References

  1. M.A. Prelas and K. Saha: Wide band-gap electronic materials, in Encyclopedia of Chemical Processing, edited by S. Lee (CRC Press, Boca Raton, FL, 2005) p. 3227.

    Google Scholar 

  2. S. Strite and H. Morkoc: GaN, AlN, and InN: A review. J. Vac. Sci. Technol., B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  3. J. Harman, A. Kabulski, V.R. Pagan, P. Famouri, K.R. Kasarla, L.E. Rodak, J.P. Hensel, and D. Korakakis: Effect of contact metals on the piezoelectric properties of aluminum nitride thin films. J. Vac. Sci. Technol., B 26, 1417 (2008).

    Article  CAS  Google Scholar 

  4. B.G. Yacobi: Semiconductor Materials—An Introduction to Basic Principles (Kluwer Academic, New York, 2003) pp. 38–40, 215.

    Google Scholar 

  5. I. Yonenaga, Y. Ohno, T. Taishi, and Y. Tokumoto: Recent knowledge of strength and dislocation mobility in wide band gap semiconductors. Physica B 404, 4999 (2009).

    Article  CAS  Google Scholar 

  6. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, T.G. Yugova, K.D. Scherbatchev, O.A. Avdeev, T.Y. Chemekova, E.N. Mokhov, S.S. Nagalyuk, H. Helava, and Y.N. Makarov: Deep centers in bulk AlN and their relation to low-angle dislocation boundaries. Physica B 404, 4939 (2009).

    Article  CAS  Google Scholar 

  7. V.A. Soltamov, I.V. Ilyin, A.A. Soltamova, D.O. Tolmachev, E.N. Mokhov, and P.G. Baranov: Identification of the deep-level defects in AlN single crystals: EPR and TL studies. Diamond Relat. Mater. 20, 1085 (2011).

    Article  CAS  Google Scholar 

  8. T.Y. Chemekova, O.V. Avdeev, I.S. Barash, E.N. Mokhov, S.S. Nagalyuk, A.D. Roenkov, A.S. Segal, Y.N. Makarov, M.G. Ramm, S. Davis, G. Huminic, and H. Helava: Sublimation growth of 2 inch diameter bulk AlN crystals. Phys. Status Solidi C 5, 1612 (2008).

    Article  CAS  Google Scholar 

  9. V.I. Polyakov, A.I. Rukovishnikov, A.V. Khomich, B.L. Druz, D. Kania, A. Hayes, M.A. Prelas, R.V. Tompson, T.K. Ghosh, and S.K. Loyalka: Surface phenomena of the thin diamond-like carbon films, in Properties and Proceedings of Vapor-Deposited Coatings, edited by R.N. Johnson, W.Y. Lee, M.A. Pickering, and B.W. Sheldon (Mater. Res. Soc. Symp. Proc. 555, Warrendale, PA, 1998) p. 345.

    Google Scholar 

  10. M.A. Prelas, T. Ghosh, R.V. Tompson, D. Viswanath, and S.K. Loyalka: Electrostatic Thin Film Chemical and Biological Sensor, US Patent & Trademark Office (The Curators of the University of Missouri, Columbia, MO, 2007) p. 29.

    Google Scholar 

  11. T.K. Ghosh, M.A. Prelas, D.S. Viswanath, and S.K. Loyalka: Science and Technology of Terrorism and Counterterrorism (Marcel Dekker Inc., New York, 2002) p. 608, 434.

    Book  Google Scholar 

  12. V.I. Polyakov, A.Y. Mityagin, A.I. Rukovishnikov, B. Druz, I. Zaritsky, and Y. Yervtukchov: Effect of various absorbates on electronic states of the thin diamond-like carbon films. Diamond Relat. Mater. 15, 1926 (2006).

    Article  CAS  Google Scholar 

  13. V.I. Polyakov, A.I. Rukovishnikov, N.M. Rossukanyi, V.G. Pereverzev, S.M. Pimenov, J.A. Carlisle, D.M. Gruen, and E.N. Loubnin: Charge-based deep level transient spectroscopy of undoped and nitrogen-doped ultrananocrystalline diamond films. Diamond Relat. Mater. 12, 1776 (2003).

    Article  CAS  Google Scholar 

  14. V.I. Polyakov, A.I. Rukovishnikov, and V.G. Ralchenko: Surface Phenomena of CVD Diamond Films (Electrochem. Soc., 204th Meeting Proc., Honolulu, HI, 2004) p. 1801.

    Google Scholar 

  15. T. Wolkenstein: Electronic Processes on Semiconductor Surfaces During Chemisorption (Plenum Publishing, New York, 1991).

    Book  Google Scholar 

  16. F.F. Volkenstein: Electronic processes at the surface of a semiconductor during chemisorption. Sov. Phys. Usp. 9, 275 (1967).

    Google Scholar 

  17. P.V. Zant: Microchip Fabrication, 5th ed. (McGraw Hill, New York, 2004) p. 609, 40–41.

    Google Scholar 

  18. S.W. King, J.P. Barnak, M.D. Bremser, K.M. Tracy, C. Ronning, and R.F. Davis: Cleaning of AlN and GaN surface. J. Appl. Phys. 84, 5248 (1998).

    Article  CAS  Google Scholar 

  19. T. Yasumoto, K. Yamakawa, N. Iwase, and N. Shinosawa: Reaction between AlN and metal thin films during high temperature annealing. J. Ceram. Soc. Jpn. 101, 969 (1993).

    Article  CAS  Google Scholar 

  20. D.E. Montenegro: Chemical Sensor using Single Crystal Diamond Plates Interrogated with Charge-Based Deep-Level Transient Spectroscopy based on the Quantum Fingerprint Model: Instrumentation and Methodology., Nuclear Science & Engineering Institute, (University of Missouri, Columbia, 2011), p. 129.

    Google Scholar 

  21. Z. Kachwalla and D.J. Miller: Transient spectroscopy using the hall effect. Appl. Phys. Lett. 50, 1438 (1987).

    Article  CAS  Google Scholar 

  22. J.B. Cui, J. Ristein, M. Stammler, K. Janischowsky, G. Kleber, and L. Ley: Hydrogen termination and electron emission from CVD diamond surfaces: A combined secondary electron emission, photoelectron emission microscopy, photoelectron yield, and field emission study. Diamond Relat. Mater. 9, 1143 (2000).

    Article  CAS  Google Scholar 

  23. I. Thurzo, R. Beyer, and D.R.T. Zahn: Experimental evidence for complementary spatial sensitivities of capacitance and charge deep-level transient spectroscopies. Semicond. Sci. Technol. 15, 378 (2000).

    Article  CAS  Google Scholar 

  24. D.V. Lang: Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974).

    Article  CAS  Google Scholar 

  25. J.C. Balland, J.P. Zielinger, M. Tapiero, J.G. Gross, and C. Noguet: Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy. II. Evaluation of varous signal processing methods. J. Phys. D: Appl. Phys. 19, 71 (1986).

    Article  CAS  Google Scholar 

  26. B.M. Arora, S. Chakrarty, S. Subramanian, V.I. Polyakov, M.G. Ermakov, O.N. Ermakova, and P.I. Perov: Deep-level transient charge spectroscopy of Sn donors in AlxGa1_xAs. J. Appl. Phys. 73, 1802 (1993).

    Article  CAS  Google Scholar 

  27. V.I. Polyakov, N.M. Rossukanyi, A.I. Rukovishnikov, S.M. Pimenov, A.V. Karabutov, and V.I. Konov: Effects of post-growth treatment and coating with ultrathin metal layers on the band bending and field electron emission of diamond films. J. Appl. Phys. 84, 2882 (1998).

    Article  CAS  Google Scholar 

  28. L. Wang, X. Chen, G. Wu, W. Guo, S. Cao, K. Shang, and W. Han: The mechanism of persistent photoconductivity induced by minority carrier trapping effect in ultraviolet photo-detector made of polycrystalline diamond film. Thin Solid Films 520, 752 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported through fellowships through the Nuclear Regulatory Commission, No. NRC-38-08-959 and the Department of Education, No. DE-FG07-07ID14892. Funding was also provided by the Defense Threat Reduction Agency through Grant No. W911SR-07-C-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason B. Rothenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothenberger, J.B., Montenegro, D.E., Prelas, M.A. et al. A Q-DLTS investigation of aluminum nitride surface termination. Journal of Materials Research 27, 1198–1204 (2012). https://doi.org/10.1557/jmr.2012.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.50

Navigation