Skip to main content
Log in

Neck formation in reactive sintering: A model 2-D experiment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silica-titania sub-close-packed single layers were deposited by spin coating titanium alkoxide sols containing inert 0.5 micrometer silica particles to study the process of reactive sintering more closely than has been done before. The sub-close-packed single layers were designed to achieve a coating density such that pairs or chains of silica particles were placed on the flat substrate and held together by the reactive titania thin films overlaid on the surface and in the neck regions of these essentially 2-D particle networks. Because of the low density of silica particles, all of the two-particle junctions and neck regions were aligned for geometrically direct viewing; as a result scanning electron microscopy was useful for observing the morphology of these neck regions. Image analysis was used to quantify the neck diameter for varying titania/silica precursor concentration ratios. Geometrical calculations that relate the change in neck volume to the neck radius are presented. Implications for design of reactive sintering systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. R.M. German, P. Suri, and S.J. Park: Review: Liquid-phase sintering. J. Mater. Sci. 44, 1–39 (2009).

    Article  CAS  Google Scholar 

  2. Y.-M. Chiang, D.P. Birnie III, and W.D. Kingery: Physical Ceramics: Principles for Ceramic Science and Engineering (John Wiley & Sons Inc., New York, 1997).

    Google Scholar 

  3. A. Du Pasquier: An approach to laminated flexible dye-sensitized solar cells. Electrochim. Acta 52, 7469–7474 (2007).

    Article  CAS  Google Scholar 

  4. D. Zhang, T. Yoshida, and H. Minoura: Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv. Mater. 15, 814–817 (2003).

    Article  CAS  Google Scholar 

  5. S. Murali, S.P. Lee, and D.P. Birnie III: The importance of silica morphology in silica-titania with dye-sensitized solar functionality. Thin Solid Films. (2012, submitted).

    Google Scholar 

  6. S.H. Elder, F.M. Cot, Y. Su, S.M. Heald, A.M. Tyryshkin, M.K. Bowman, Y. Gao, A.G. Joly, M.L. Balmer, A.C. Kolwaite, K.A. Magrini, and D.M. Blake: The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials. J. Am. Chem. Soc. 122, 5138–5146 (2000).

    Article  CAS  Google Scholar 

  7. J. Zhang, Z. Liu, B. Han, Z. Li, G. Yang, J. Li, and J. Chen: Preparation of silica and TiO2–SiO2 core–shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent. J. Supercrit. Fluids 36, 194–201 (2006).

    Article  CAS  Google Scholar 

  8. B. Idriss and P.V. Kamat: Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites. J. Phys. Chem. 99, 9182–9188 (1995).

    Article  Google Scholar 

  9. W. Jiaqi, H. Li, and K. Chen: Synthesis and characterization of Fe3O4@ZnO core–shell structured nanoparticles. Mater. Chem. Phys. 114, 30–32 (2009).

    Article  Google Scholar 

  10. A. José, R. van Grieken, M.J. López-Muñoz, and J. Marugán: A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl. Catal., A 312, 202–212 (2006).

    Article  Google Scholar 

  11. K. Isao, T. Kase, Y. Taguchi, and M. Tanaka: Preparation of titania/silica composite microspheres by sol–gel process in reverse suspension. Mater. Res. Bull. 38, 585–597 (2003).

    Article  Google Scholar 

  12. X. Gaoand and I.E. Wachs: Titania–silica as catalysts: Molecular structural characteristics and physico-chemical properties. Catal. Today 51, 233–254 (1999).

    Article  Google Scholar 

  13. L. Zhao, J. Yu, and B. Cheng: Preparation and characterization of SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell. J. Solid State Chem. 178, 1818–1824 (2005).

    Article  CAS  Google Scholar 

  14. S. Srinivasan, A.K. Datye, M. Hampden-Smith, I.E. Wachs, G. Deo, J.M. Jehng, A.M. Turek, and C.H.F. Peden: The formation of titanium oxide monolayer coatings on silica surfaces. J. Catal. 131, 260–275 (1991).

    Article  CAS  Google Scholar 

  15. A. Hanprasopwattana, S. Srinivasan, A.G. Sault, and A.K. Datye: Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM). Langmuir 12, 3173–3179 (1996).

    Article  CAS  Google Scholar 

  16. H. Choi, J. Park, and R.K. Singh: Nanosized titania encapsulated silica particles using an aqueous TiCl4 solution. Appl. Surf. Sci. 240, 7–12 (2005).

    Article  CAS  Google Scholar 

  17. G. Lian, C. Thornton, and M.J. Adams: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993).

    Article  CAS  Google Scholar 

  18. D. Megias-Alguacil and L.J. Gauckler: Capillary forces between two solid spheres linked by a concave liquid bridge: Regions of existence and forces mapping. AIChE J. 55, 1103–1109 (2009).

    Article  CAS  Google Scholar 

  19. J. Van de Lagemaat, K.D. Benkstein, and A.J. Frank: Relation between particle coordination number and porosity in nanoparticle films: Implications to dye-sensitized solar cells. J. Phys. Chem. B 105, 12433–12436 (2001).

    Article  Google Scholar 

  20. T.M. Shaw: Liquid redistribution during liquid-phase sintering. J. Am. Ceram. Soc. 69, 27–34 (1986).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by seed funding from the Rutgers University Academic Excellence Fund, the Malcolm G. McLaren Fellowship and by the NSF Ceramic, Composite, and Optical Materials Center (CCOMC) at Rutgers. We are thankful for experimental assistance provided by Tiffany Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunbar P. Birnie III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, S., Birnie, D.P. Neck formation in reactive sintering: A model 2-D experiment. Journal of Materials Research 27, 1193–1197 (2012). https://doi.org/10.1557/jmr.2012.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.47

Navigation