Skip to main content
Log in

The Structural Evolution and Densification Mechanisms of Nanophase Separation Sintering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanophase separation sintering (NPSS) facilitates low temperature, pressureless sintering through the formation of solid phase necks driven by phase separation. Systems that have been shown to exhibit this phenomenon are W–Cr, Cr–Ni and to a lesser degree Ti–Mg. Initial information on the average rate-limiting sintering kinetics in these systems was obtained using traditional master sintering curve analysis, but it is very clear that multiple processes occur during NPSS, and these should each have their own characteristic kinetics. Here we analyze these three systems in greater kinetic detail using densification rates in a Kissinger-style analysis derived explicitly for densification data. For the W–Cr and Cr–Ni systems two critical temperatures were identified: one at low temperatures for the formation of the secondary phase necks, and a second one at high temperatures corresponding to the onset of rapid densification. The activation energies of these processes are different, and reflective of bulk solute diffusion and interdiffusion, respectively. Combined with microstructural observations, these data show that the onset of rapid densification at high temperatures is facilitated by the presence of the second-phase necks, and occurs at the point where the system can fully interdiffuse, rehomogenizing those necks. These observations help explain why the Ti–Mg system does not densify well, because it does not exhibit redissolution at high temperatures. These results help clarify the conditions needed to achieve NPSS and may support design of new alloys for NPSS behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Park and C.A. Schuh: Nat. Commun., 2015, https://doi.org/10.1038/ncomms7858.

    Article  Google Scholar 

  2. M. Park, T. Chookajorn, and C.A. Schuh: Acta Mater., 2018, vol. 145, pp. 123–33.

    Article  CAS  Google Scholar 

  3. R.M. German: Sintering Theory and Practice. Wiley, New York, 1996.

    Google Scholar 

  4. R.M. German: Liquid Phase Sintering. Springer Science & Business Media, New York, 2013.

    Google Scholar 

  5. P.K. Samal and J.W. Newkirk: in ASM Handbook, Volume 07—Powder Metallurgy. ASM International, New York, 2015.

  6. R.M. German: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 1553–67.

    Article  CAS  Google Scholar 

  7. C. Padmavathi and A. Upadhyaya: Sci. Sinter., 2010, vol. 42, pp. 363–82.

    Article  CAS  Google Scholar 

  8. Z.Z. Fang: Sintering of Advanced Materials. Elsevier, Amsterdam, 2010.

    Book  Google Scholar 

  9. J.L. Johnson and R.M. German: Metall. Mater. Trans. B., 1996, vol. 27B, pp. 901–9.

    Article  CAS  Google Scholar 

  10. J.L. Johnson and R.M. German: Metall. Trans. A., 1993, vol. 24, pp. 2369–77.

    Article  Google Scholar 

  11. A. Upadhyaya and R.M. German: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 2631–8.

    Article  CAS  Google Scholar 

  12. J. Liu, A. Lal, and R.M. German: Acta Mater., 1999, vol. 47, pp. 4615–26.

    Article  CAS  Google Scholar 

  13. A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, D. Krause, T. Brzezinski, J. Schroers, R. Fulop, J.S. Myerberg, M. Sowerbutts, Y.-M. Chiang, A. John Hart, E.M. Sachs, E.E. Lomeli, and A.C. Lund: Int. J. Refract. Met. Hard Mater., 2018, vol. 73, pp. 22–8.

    Article  CAS  Google Scholar 

  14. R. Raman and R.M. German: Metall. Mater. Trans. A., 1995, vol. 26, pp. 1909–09.

    Article  CAS  Google Scholar 

  15. P. Nandwana, A.M. Elliott, D. Siddel, A. Merriman, W.H. Peter, and S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2017, vol. 21, pp. 207–18.

    Article  CAS  Google Scholar 

  16. A. Bose, A. Lund, J. Reidy, C. Craven, M. Gibson, A. Barbati, C. Schuh, L. Jorgensen, J. Tobia, A. Dias, and N. Tuncer: Int. J. Powder Metall., vol. 57, pp. 17–30.

  17. N. Azgomi, F. Tetteh, S.H. Duntu, and S. Boakye-Yiadom: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 3382–400.

    Article  Google Scholar 

  18. K. Graetz, J.S. Paras, and C.A. Schuh: Materialia., 2018, vol. 1, pp. 89–98.

    Article  Google Scholar 

  19. H. Su and D.L. Johnson: J. Am. Ceram. Soc., 1996, vol. 79, pp. 3211–17.

    Article  CAS  Google Scholar 

  20. D. Blaine, J. Gurosik, S.J. Park, and D. Heaney: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 715–20.

    Article  CAS  Google Scholar 

  21. M. Vattur-Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, and L. Nyborg: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 255–63.

    Article  Google Scholar 

  22. J. Banerjee, A. Ray, A. Kumar, and S. Banerjee: J. Nucl. Mater., 2013, vol. 443, pp. 467–78.

    Article  CAS  Google Scholar 

  23. D.C. Jana, G. Sundararajan, and K. Chattopadhyay: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5599–606.

    Article  Google Scholar 

  24. I.M. Robertson and G.B. Schaffer: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 1968–79.

    Article  CAS  Google Scholar 

  25. S.J. Park, S.H. Chung, J.M. Martín, J.L. Johnson, and R.M. German: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 2941–8.

    Article  CAS  Google Scholar 

  26. T. Frueh, I.O. Ozer, S.F. Poterala, H. Lee, E.R. Kupp, C. Compson, J. Atria, and G.L. Messing: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 1030–7.

    Article  CAS  Google Scholar 

  27. D.L. Johnson: Charact. Model. Control Sintered Ceram. Microstruct. Prop., 2006, pp. 1–13.

  28. V. Pouchly, K. Maca, and Z. Shen: J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2275–83.

    Article  CAS  Google Scholar 

  29. Standard Practices for Production and Preparation of Powder Metallurgy (PM) Test Specimens.

  30. Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis.

  31. S. Solonin, Y.M. Solonin, and V. Skorokhod: Sov. Powder Metall. Met. Ceram., 1966, vol. 5, pp. 782–8.

    Article  Google Scholar 

  32. M. Park: PhD Thesis, Massachusetts Institute of Technology, 2015.

  33. P.E.A. Turchi, L. Kaufman, and Z.-K. Liu: Calphad., 2006, vol. 30, pp. 70–87.

    Article  CAS  Google Scholar 

  34. C. Oliver and C.A. Schuh: Metall. Mater. Trans. A., 2021, https://doi.org/10.1007/s11661-021-06399-y.

    Article  Google Scholar 

  35. L.S. Darken: Trans Aime., 1948, vol. 175, pp. 184–201.

    Google Scholar 

  36. M. Park, K.C. Alexander, and C.A. Schuh: J. Alloys Compd., 2014, vol. 611, pp. 433–9.

    Article  CAS  Google Scholar 

  37. W.F. Gale and T.C. Totemeier: in Smithells Metals Reference Book. 8th ed. Elsevier, Amsterdam, 2004.

  38. C. Herzig and Y. Mishin: in Diffusion in Condensed Matter: Methods, Materials, Models, 2005, pp. 337–66.

  39. S. Klotsman, V.M. Koloskov, S. Osetrov, I. Polikarpova, G. Tatarinova, and A. Timofeyev: vol. 66, Trans Tech Publ, 1990, pp. 439–46.

  40. J. Askill: Phys. Status Solidi A., 1971, vol. 8, pp. 587–96.

    Article  CAS  Google Scholar 

  41. D. Takahata, W.A. Miller, and K.T. Aust: Metall. Trans. A., 1978, vol. 9, pp. 935–40.

    Article  Google Scholar 

  42. Y.F. Yang, S.D. Luo, C.J. Bettles, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A., 2011, vol. 528, pp. 7381–7.

    Article  CAS  Google Scholar 

  43. W. Wei, Y. Liu, K. Zhou, and B. Huang: Powder Metall., 2003, vol. 46, pp. 246–50.

    Article  CAS  Google Scholar 

  44. I.M. Robertson and G.B. Schaffer: Powder Metall., 2009, vol. 52, pp. 311–15.

    Article  CAS  Google Scholar 

  45. D.Q. Zhang, Z.H. Liu, Q.Z. Cai, J.H. Liu, and C.K. Chua: Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 15–22.

    Article  CAS  Google Scholar 

  46. J.L. Murray: Bull. Alloy Phase Diagr., 1986, vol. 7, pp. 245–48.

    Article  CAS  Google Scholar 

  47. B.-C. Zhou, S.-L. Shang, Y. Wang, and Z.-K. Liu: Data Brief., 2015, vol. 5, pp. 900–12.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Aeronautics and Space Administration under Grants No. 80NSSC19K1055 and 029856-00001 and made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under Award Number DMR-1419807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Ethics declarations

Conflict of interest

Christian Oliver and Christopher A. Schuh are both affiliated with Massachusetts Institute of Technology. Massachusetts Institute of Technology has licensed patents and submitted patent applications for nanophase separation sintering alloys including for material systems discussed in these results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 6, 2021; accepted August 16, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, C., Schuh, C.A. The Structural Evolution and Densification Mechanisms of Nanophase Separation Sintering. Metall Mater Trans A 52, 4946–4956 (2021). https://doi.org/10.1007/s11661-021-06437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06437-9

Navigation