Skip to main content
Log in

Symmetrically abrupt GaN/AlGaN superlattices by alternative interface–interruption scheme

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2013

This article has been updated

Abstract

We report an alternative interruption scheme to effectively improve the abruptness of GaN/AlGaN superlattices by minimizing the asymmetric feature of different types of heterointerfaces. It is found by x-ray diffraction that the interface abruptness is degraded and the GaN thickness is reduced with the interruption time increasing. Detailed investigation with scanning transmission electron microscopy demonstrates that the Al diffusion and the interface etching effect at the GaN/AlGaN interface are the critical reasons leading to the interfacial asymmetry. An alternative interface–interruption scheme is then proposed to enhance the abruptness of the superlattice interfaces, and consequently, the emission efficiency can also be significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

Change history

References

  1. F.A. Ponce and D.P. Bour: Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997).

    Article  CAS  Google Scholar 

  2. J.W. Orton and C.T. Foxon: Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 61, 1 (1998).

    Article  CAS  Google Scholar 

  3. I. Akasaki and H. Amano: Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn. J. Appl. Phys., Part 1 36, 5393 (1997).

    Article  CAS  Google Scholar 

  4. S.R. Jeon, S.J. Lee, S.H. Jung, S.H. Lee, J.H. Baek, H. Jeong, O.H. Cha, E.K. Suh, and M.S. Jeong: Effect of V-shaped defects on structural and optical properties of AlGaN/InGaN multiple quantum wells. J. Phys. D: Appl. Phys. 41, 132006 (2008).

    Article  Google Scholar 

  5. S.H. Han, D.Y. Lee, S.J. Lee, C.Y. Cho, M.K. Kwon, S.P. Lee, D.Y. Noh, D.J. Kim, Y.C. Kim, and S.J. Park: Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 231123 (2009).

    Article  Google Scholar 

  6. M. Esmaeili, M. Sabooni, H. Haratizadeh, P.P. Paskov, B. Monemar, P. Oholz, S. Kamiyama, and M. Iwaya: Optical properties of GaN/AlGaN QW nanostructures with different well and barrier widths. J. Phys. Condens. Matter 19, 356218 (2007).

    Article  Google Scholar 

  7. M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, and E. Kuokstis: III -nitride UV devices. Jpn. J. Appl. Phys., Part 1 44, 7191 (2005).

    Article  CAS  Google Scholar 

  8. Z. Sitar, M.J. Paisley, B. Yan, J. Ruan, W.J. Choyke, and R.F. Davis: Growth of AlN/GaN layered structures by gas source molecular-beam epitaxy. J. Vac. Sci. Technol., B 8, 316 (1990).

    Article  CAS  Google Scholar 

  9. K. Hoshino, T. Someya, K. Hirakawa, and Y. Arakawa: Low-pressure MOCVD growth of GaN/AlGaN multiple quantum wells for intersubband transitions. J. Cryst. Growth 237, 1163 (2002).

    Article  Google Scholar 

  10. D. Fuhrmann, T. Retzlaff, U. Rossow, H. Bremers, A. Hangleiter, G. Ade, and P. Hinze: Large internal quantum efficiency of In-free UV-emitting GaN/AlGaN quantum-well structures. Appl. Phys. Lett. 88, 191108 (2006).

    Article  Google Scholar 

  11. J.S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T.D. Moustakas, C.J. Collins, and P. Komninou: High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy. J. Appl. Phys. 100, 104506 (2006).

    Article  Google Scholar 

  12. A. Asgari, E. Ahmadi, and M. Kalafi: AlxGa1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectron. J. 40, 104 (2009).

    Article  CAS  Google Scholar 

  13. E. Baumann, F.R. Giorgetta, D. Hofstetter, H. Lu, X. Chen, W.J. Schaff, L.F. Eastman, S. Golka, W. Schrenk, and G. Strasser: Intersubband photoconductivity at 1.6 μm using a strain-compensated AlN/GaN superlattice. Appl. Phys. Lett. 87, 191102 (2005).

    Article  Google Scholar 

  14. D. Hofstetter, E. Baumann, F.R. Giorgetta, F. Guillot, S. Leconte, and E. Monroy: Optically nonlinear effects in intersubband transitions of GaN/AlN-based superlattice structures. Appl. Phys. Lett. 91, 131115 (2007).

    Article  Google Scholar 

  15. A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S.E. Schacham, M. Tchernycheva, and F.H. Julien: Near infrared quantum cascade detector in GaN/AlGaN/AlN heterostructures. Appl. Phys. Lett. 92, 011112 (2008).

    Article  Google Scholar 

  16. L. Nevou, N. Kheirodin, M. Tchernycheva, L. Meignien, P. Crozat, A. Lupu, E. Warde, F.H. Julien, G. Pozzovivo, S. Golka, G. Strasser, F. Guillot, and E. Monroy: Short-wavelength intersubband electroabsorption modulation based on electron tunneling between GaN/AlN coupled quantum wells. Appl. Phys. Lett. 90, 223511 (2007).

    Article  Google Scholar 

  17. Y.T. Moon, D.J. Kim, K.M. Song, D.W. Kim, M.S. Yi, D.Y. Noh, and S.J. Park: Effect of growth interruption and the introduction of H2 on the growth of InGaN/GaN multiple quantum wells. J. Vac. Sci. Technol. B 18, 2631 (2000).

    Article  CAS  Google Scholar 

  18. T. Shirasawa, N. Mochida, A. Inoue, T. Honda, T. Sakaguchi, F. Koyama, and K. Iga: Interface control of GaN/AlGaN quantum well structures in MOVPE growth. J. Cryst. Growth 189, 124 (1998).

    Article  Google Scholar 

  19. D.B. Li, M. Aoki, T. Katsuno, H. Miyake, K. Hiramatsu, and T. Shibata: Influence of growth interruption and Si doping on the structural and optical properties of AlxGaN/AlN (x > 0.5) multiple quantum wells. J. Cryst. Growth 298, 500 (2007).

    Article  CAS  Google Scholar 

  20. J. Bai, T. Wang, P.J. Parbrook, I.M. Ross, and A.G. Cullis: V-shaped pits formed at the GaN/AlN interface. J. Cryst. Growth 289, 63 (2006).

    Article  CAS  Google Scholar 

  21. T. Schupp, K. Lischka, and D.J. As: MBE growth of atomically smooth non-polar cubic AlN. J. Cryst. Growth 312, 1500 (2010).

    Article  CAS  Google Scholar 

  22. C.R. Wie, J.C. Chen, H.M. Kim, P.L. Liu, Y.W. Choi, and D.M. Hwang: X-ray interference measurement of ultrathin semiconductor layers. Appl. Phys. Lett. 55, 1774 (1989).

    Article  CAS  Google Scholar 

  23. T.J. Prosa, P.H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S.P. DenBaars, S. Nakamura, and J.S. Speck: Atom probe analysis of interfacial abruptness and clustering within a single InxGa1?xN quantum well device on semipolar (10) GaN substrate. Appl. Phys. Lett. 98, 191903 (2011).

    Article  Google Scholar 

  24. M.E. Hawkridge, Z. Liliental-Weber, H.J. Kim, S. Choi, D. Yoo, J-H. Ryou, and R.D. Dupuis: Erratic dislocations within funnel defects in AlN templates for AlGaN epitaxial layer growth. Appl. Phys. Lett. 94, 171912 (2009).

    Article  Google Scholar 

  25. V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella: Quantum confinement and recombination dynamics in silicon nanocrystals embedded. J. Appl. Phys. 87, 8165 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partly supported by the “973” programs (Grant Nos. 2012CB619301 and 2011CB925600) and “863” (Grant No. 2011AA03A111), the FRFCU (Grant Nos. 2012121011 and 2011121042), the National Natural Science Foundation, and Science & technology program of Fujian and Xiamen of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanjun Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Lin, N., Cai, D. et al. Symmetrically abrupt GaN/AlGaN superlattices by alternative interface–interruption scheme. Journal of Materials Research 28, 716–722 (2013). https://doi.org/10.1557/jmr.2012.432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.432

Navigation