Skip to main content
Log in

The effects of postdeposition annealing conditions on structure and created defects in Zn0.90Co0.10O thin films deposited on Si(100) substrate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We analyze the effect of postdeposition annealing conditions on both the structure and the created defects in Zn0.90Co0.10O thin films, which deposited on the Si(100) substrates by the radio frequency magnetron sputtering technique using a homemade target. The dependence of the number and distribution of defects in homogeneously substituted Co+2 for Zn+2 ions in ZnO lattice on the annealing conditions is investigated. Orientations of thin films are in the [0002] direction with a surface roughness changing from 67 ± 2 nm to 25.8 ± 0.6 nm by annealing. The Co+2 ion substitution, changing from 7.5% ± 0.3% to 8.8 ± 0.3%, leads to the formation of Zn–O–Co bonds instead of Zn–O–Zn bonds and splitting of the Co 2p energy level to Co 2p1/2 and Co 2p3/2 with an energy difference of 15.67 ± 0.06 eV. The defects in the lattice are revealed from the correlations between Zn–O–Co bonds and intensity of the Raman peak at around 691 cm−1. In addition, the asymmetry changes of O 1s peak positions in the x-ray photoelectron spectra are in agreement with the Raman results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.
FIG. 5.

Similar content being viewed by others

References

  1. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, and M. Kawasaki: Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 62–67 (2004).

    Article  CAS  Google Scholar 

  2. C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, P.A. Stampe, R.J. Kennedy, E.C. Moreira, and U.S. Sias: Magnetism in dilute magnetic oxide thin films based on SnO2. Phys. Rev. B 74, 115307 (2006).

    Article  CAS  Google Scholar 

  3. M.J. Calderon and S. Das Sarma: Theory of carrier mediated ferromagnetism in dilute magnetic oxides. Ann. Phys. 322, 2618–2634 (2007).

    Article  CAS  Google Scholar 

  4. F. Matsukura, H. Ohno, and T. Dietl: In Handbook of Magnetic Materials, edited by K.H.J. Buschow (Elsevier Science, cmAmsterdam, Netherlands, 2002).

  5. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, and T. Steiner: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74 (2004).

    Article  CAS  Google Scholar 

  6. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, and R. Seshadri: Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003).

    Article  CAS  Google Scholar 

  7. Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, and T.C. Chong: Structural and optical properties of Co-doped ZnO thin film. J. Supercond. 18(1), 97–103 (2005).

    Article  CAS  Google Scholar 

  8. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, and Y.M. Kim: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84(8), 1338–1340 (2004).

    Article  CAS  Google Scholar 

  9. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park, and R.G. Wilson: Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83(26), 5488–5490 (2003).

    Article  CAS  Google Scholar 

  10. P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, and Z. Golacki: Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co. Phys. Rev. Lett. 96, 017203 (2003).

    Article  CAS  Google Scholar 

  11. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, and S.I. Shah: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 2675–2680 (2006).

    Article  CAS  Google Scholar 

  12. J. Hays, K.M. Reddy, N.Y. Graces, M.H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N.C. Giles, C. Wang, S. Thevuthasan, and A. Punnoose: Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Phys. Condens. Matter 19, 266203 (2007).

    Article  CAS  Google Scholar 

  13. C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, and J.M.D. Coey: Cobalt-doped ZnO–a room temperature dilute magnetic semiconductor. Appl. Surf. Sci. 247, 493–496 (2005).

    Article  CAS  Google Scholar 

  14. S. Thota, T. Dutta, and J. Kumar: On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J. Phys. Condens. Matter 18, 2473–2486 (2006).

    Article  CAS  Google Scholar 

  15. S.K. Mandal, A.K. Das, T.K. Nath, D. Karmakar, and B. Satpati: Microstructural and magnetic properties of ZnO:TM (TM = Co, Mn) diluted magnetic semiconducting nanoparticles. J. Appl. Phys. 100, 104315 (2006).

    Article  CAS  Google Scholar 

  16. K.R. Kittilstved, W.K. Liu, and D.R. Gamelin: Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006).

    Article  CAS  Google Scholar 

  17. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (2008).

    Article  CAS  Google Scholar 

  18. N. Khare, M.-J. Kappers, M. Wei, M.-G. Blamire, and J.-L. MacManus-Driscoll: Defect-induced ferromagnetism in Co-doped ZnO. Adv. Mater. 18(11), 1449–1452 (2006).

    Article  CAS  Google Scholar 

  19. C. Song, S.N. Pan, X.J. Liu, X.W. Li, F. Zeng, W.S. Yan, B. He, and F. Pan: Evidence of structural defect enhanced room-temperature ferromagnetism in Co-doped ZnO. J. Phys. Condens. Matter 19, 176229 (2007).

    Article  CAS  Google Scholar 

  20. C.D. Pemmaraju, R. Hanafin, T. Archer, H.B. Braun, and S. Sanvito: Impurity-ion pair induced high-temperature ferromagnetism in Co-doped ZnO. Phys. Rev. B 78, 054428 (2008).

    Article  CAS  Google Scholar 

  21. M. Berciu and R.N. Bhatt: Effects of disorder on ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 87, 107203 (2001).

    Article  CAS  Google Scholar 

  22. J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, and K. Paul: Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010).

    Article  CAS  Google Scholar 

  23. D. Chakraborti, G.R. Trichy, J.T. Prater, and J. Narayan: The effect of oxygen annealing on ZnO:Cu and ZnO:(Cu, Al) diluted magnetic semiconductors. J. Phys. D: Appl. Phys. 40, 7606–7613 (2007).

    Article  CAS  Google Scholar 

  24. S. Bang, S. Lee, J. Park, S. Park, Y. Ko, C. Choi, H. Chang, H. Park, and H. Jeon: The effects of post-annealing on the performance of ZnO thin film transistors. Thin Solid Films 519, 8109–8113 (2011).

    Article  CAS  Google Scholar 

  25. T. Wang, Y. Liu, Q. Fang, Y. Xuc, G. Li, Z. Sun, M. Wu, J. Li, and H. He: Morphology and optical properties of Co doped ZnO textured thin films. J. Alloys Compd. 509, 9116–9122 (2011).

    Article  CAS  Google Scholar 

  26. M.M. Can, S.I. Shah, M.F. Doty, C.R. Haughn, and T. Fırat: Electrical and optical properties of point defects in ZnO thin films. J. Phys. D: Appl. Phys. 45, 195104 (2012).

    Article  CAS  Google Scholar 

  27. M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari, and M. Saleem: Optical constants of vacuum annealed radio frequency (RF) magnetron sputtered zinc oxide thin films. Opt. Commun. 285, 4405–4412 (2012).

    Article  CAS  Google Scholar 

  28. C. Guillen and J. Herrero: Transparent films on polymers for photovoltaic applications. Vacuum 84, 924–929 (2010).

    Article  CAS  Google Scholar 

  29. A.K. Srivastava, Praveen, M. Arora, S.K. Gupta, B.R. Chakraborty, S. Chandra, S. Toyoda, and H. Bahadur: Nanostructural features and optical performance of RF magnetron sputtered ZnO thin films. J. Mater. Sci. Technol. 26(11), 986–990 (2010).

    Article  CAS  Google Scholar 

  30. Y.F. Zhu, G.H. Zhou, H.Y. Ding, A.H. Liu, Y.B. Lin, and Y.W. Dong: Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures. Superlattices Microstruct. 50, 549–556 (2011).

    Article  CAS  Google Scholar 

  31. A. Layek, B. Manna, and A. Chowdhury: Carrier recombination dynamics through defect states of ZnO nanocrystals: From nanoparticles to nanorods. Chem. Phys. Lett. 539–540, 133–138 (2012).

    Article  CAS  Google Scholar 

  32. M-W. Ahn, K-S. Park, J-H. Heo, J-G. Park, D-W. Kim, K.J. Choi, J-H. Lee, S-H. Hong: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008).

    Article  CAS  Google Scholar 

  33. H. Jiang, H. Wang, and X. Wang: Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Appl. Surf. Sci. 257, 6991–6995 (2011).

    Article  CAS  Google Scholar 

  34. H-J. Lee, S-Y. Jeong, C.R. Cho, and C.H. Park: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002).

    Article  CAS  Google Scholar 

  35. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824–3826 (2001).

    Article  CAS  Google Scholar 

  36. Y.B. Zhang, Q. Liu, T. Sritharan, C.L. Gan, and S. Li: Pulsed laser ablation of preferentially orientated ZnO:Co diluted magnetic semiconducting thin films on Si substrates. Appl. Phys. Lett. 89, 042510 (2006).

    Article  CAS  Google Scholar 

  37. Y. Shon, Y.H. Kwon, S.U. Yuldashev, Y.S. Park, D.J. Fu, D.Y. Kim, H.S. Kim, and T.W. Kang: Diluted magnetic semiconductor of p-type GaN epilayers implanted with Mn+ ions. J. Appl. Phys. 93, 1546–1548 (2003).

    Article  CAS  Google Scholar 

  38. K.J. Kim and Y.R. Park: Spectroscopic ellipsometry study of optical transitions in Zn1−xCoxO alloys. Appl. Phys. Lett. 81, 1420–1422 (2002).

    Article  CAS  Google Scholar 

  39. S.B. Zhang, S-H. Wei, and A. Zunger: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001).

    Article  CAS  Google Scholar 

  40. C. Ravichandran, G. Srinivasan, C. Lennon, S. Sivananthan, and J. Kumar: Influence of post-deposition annealing on the structural, optical and electrical properties of Li and Mg co-doped ZnO thin films deposited by sol–gel technique. Superlattices Microstruct. 49, 527–536 (2011).

    Article  CAS  Google Scholar 

  41. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, A.A. Myatiev, P.B. Straumal, G. Schütz, E. Goering, and B. Baretzky: Ferromagnetic properties of the Mn-doped nanograined ZnO films. J. Appl. Phys. 108, 073923 (2010).

    Article  CAS  Google Scholar 

  42. M. Subramanian, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, and T. Jimbo: Magnetic anisotropy in nanocrystalline Co-doped ZnO thin films. Chem. Phys. Lett. 487, 97–100 (2010).

    Article  CAS  Google Scholar 

  43. M.M. Can, T. Fırat, and Ş. Özcan: Dominancy of antiferromagnetism in Zn1–xCoxO diluted magnetic semiconductors. J. Mater. Sci. 46, 1830–1838 (2011).

    Article  CAS  Google Scholar 

  44. M.M. Can, T. Fırat, and Ş. Özcan: Structural, optic, and magnetic investigation of the synthesized ZnO and Zn0.99Co0.01O semiconductors via solid state reaction. IEEE Trans. Magn. 46(6), 1809–1812 (2010).

    Article  CAS  Google Scholar 

  45. L. Reimer: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, Germany, 1998; pp. 208–218.

  46. J. Husna, M.M. Aliyu, M.A. Islam, P. Chelvanathan, N.R. Hamzah, M.S. Hossain, M.R. Karim, and N. Amin: Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia 25, 55–61 (2012).

    Article  CAS  Google Scholar 

  47. P.T. Hsieh, Y.C. Chen, M.S. Lee, K.S. Kao, M.C. Kao, and M.P. Houng: The effects of oxygen concentration on ultraviolet luminescence of ZnO films by sol-gel technology and annealing. J. Sol-Gel Sci. Technol. 47, 1–6 (2008).

    Article  CAS  Google Scholar 

  48. A.G. Khairnar and A.M. Mahajan: Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 15, 24–28 (2013).

    Article  CAS  Google Scholar 

  49. D.R. Sahu and J-L. Huang: The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere. Thin Solid Films 516, 208–211 (2007).

    Article  CAS  Google Scholar 

  50. C.D. Wagner, W.M. Riggs, L.E. Davis, and J.F. Moulder: Handbook of X-ray Photoelectron Spectroscopy, G.E. Muilenberg, ed. (Perkin-Elmer, Minnesota, 1979; pp. 82–83, 88–89, 172–173.

  51. L-W. Lai and C-T. Lee: Investigation of optical and electrical properties of ZnO thin films. Mater. Chem. Phys. 110, 393–396 (2008).

    Article  CAS  Google Scholar 

  52. P-T. Hsieh, Y-C. Chen, K-S. Kao, and C-M. Wang: Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 90, 317–321 (2008).

    Article  CAS  Google Scholar 

  53. S-Y. Sun, J-L. Huang, and D-F. Lii: Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation. J Vac: Sci. Technol. 22, 1235 (2004).

    CAS  Google Scholar 

  54. A.J. Fernandes, P.P-T. Chen, M. Wintrebert-Fouquet, H. Timmers, S.K. Shrestha, H. Hirshy, and R.M. Perks, and B.F. Usher: The nature of nitrogen related point defects in common forms of InN. J. Appl. Phys. 101, 123702 (2007).

    Article  CAS  Google Scholar 

  55. C. Lennon, R.B. Tapia, R. Kodama, Y. Chang, S. Sivananthan, and M. Deshpande: Effects of annealing in a partially reducing atmosphere on sputtered Al-doped ZnO thin films. J. Electron. Mater. 38(8), 1568–1573 (2009).

    Article  CAS  Google Scholar 

  56. X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, and B.K. Tay: Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth 223, 201–205 (2001).

    Article  CAS  Google Scholar 

  57. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, and Y.F. Lu: Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 197–198, 362–367 (2002).

    Article  Google Scholar 

  58. C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, and V.M. Naik: Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys. Condens. Mater. 19 026212 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the financial support of the Scientific and Technological Research Council of Turkey (TUBİTAK), BİDEB-2218 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Mutlu Can.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Can, M.M., Fırat, T., Shah, S. et al. The effects of postdeposition annealing conditions on structure and created defects in Zn0.90Co0.10O thin films deposited on Si(100) substrate. Journal of Materials Research 28, 708–715 (2013). https://doi.org/10.1557/jmr.2012.422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.422

Navigation