Skip to main content
Log in

Superior thermal interface via vertically aligned carbon nanotubes grown on graphite foils

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In an attempt to study the thermal transport at the interface between nanotubes and graphene, vertically aligned multiwalled carbon nanotubes (CNTs) were grown on graphite thin film substrates. A systematic cross-sectional probing of the materials’ morphology of the interface by scanning electron microscopy and high-resolution transmission electron microscopy revealed that an excellent bond existed between the nanotubes and the substrate along some fraction of interface. Imaging and electron diffraction analyses performed at the boundary reveal a polycrystalline interfacial structure. Compositional probing along the interface by energy dispersive x-ray spectroscopy revealed that there were no catalyst particles or other impurities present. The estimated interfacial thermal resistance of lower than 5–7.5 (mm2K)/W suggests that this type of CNT/graphite interface could open up multiple routes toward the designing and development of advanced thermal interface materials for aerospace and nano-/microelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE I
FIG. 10

Similar content being viewed by others

References

  1. J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessner, K. Schuett, X. Tang, and A. Ziaei: Recent progress of thermal interface material research–an overview, in THERMINIC 2008 (EDA Publishing, Rome, Italy, 2008); pp. 156.

    Google Scholar 

  2. S. Ganguli, S. Sihn, A.K. Roy, L.M. Dai, and L. Qu: Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints. J. Nanosci. Nanotechnol. 9, 1727 (2009).

    Article  CAS  Google Scholar 

  3. H. Huang, C.H. Liu, Y. Wu, and S. Fan: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17(13), 1652 (2005).

    Article  CAS  Google Scholar 

  4. P. Amama, B. Cola, T. Sands, X. Xu, and T.S. Fisher: Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology 18(38), 385303–385307 (2007).

    Article  Google Scholar 

  5. B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, and H. Hu: Photoacoustic characterization of carbon nanotube array thermal interfaces. J. Appl. Phys. 101(5), 054313 (2007).

    Article  Google Scholar 

  6. B.A. Cola, X. Xu, and T.S. Fisher: Increased real contact in thermal interfaces: A carbon nanotube/foil material. Appl. Phys. Lett. 90(9), 093513 (2007).

    Article  Google Scholar 

  7. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, and C.Y. Yang: Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Lett. 4(12), 2403 (2004).

    Article  CAS  Google Scholar 

  8. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson: Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transfer 130(5), 052401 (2008).

    Article  Google Scholar 

  9. T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar: Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30(1), 92 (2007).

    Article  CAS  Google Scholar 

  10. V. Varshney, S. Patnaik, A.K. Roy, G. Froudakis, and B.L. Farmer: Modelling of thermal transport in pillared-graphene architectures. ACS Nano 4(2), 1153 (2010).

    Article  CAS  Google Scholar 

  11. L.L. Zhang, Z. Xiong, and X.S. Zhao: Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4, 7030–7036 (2010).

    Article  CAS  Google Scholar 

  12. R.K. Paul, M. Ghazinejad, M. Penchev, J. Lin, and C.S. Ozkan: Synthesis of pillared graphene nanostructure: A counterpart of three dimensional carbon architectures. Small 6(20), 2309 (2010).

    Article  CAS  Google Scholar 

  13. V. Jousseaume, J. Cuzzocrea, N. Bernier, and V.T. Renard: Few graphene layers/carbon nanotube composites grown at complimentary-metal-oxide-semiconductor compatible temperature. Appl. Phys. Lett. 98(123103), 1 (2011).

    Google Scholar 

  14. S.M. Huang, L. Dai, and A.W.H. Mau: Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103, 4223 (1999).

    Article  CAS  Google Scholar 

  15. L.T. Qu, Y. Zhao, and L.M. Dai: Carbon microfibers sheathed with aligned carbon nanotubes: Towards multidimensional, multicomponent, and multifunctional nanomaterials. Small 2, 1052 (2006).

    Article  CAS  Google Scholar 

  16. W. Yi, L. Lu, Z. Dian-lin, Z.W. Pan, and S.S. Xie: Linear specific heat of carbon nanotubes. Phys. Rev. B 59(14), R9015 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.G. acknowledges support through U.S. Air Force Contract No. FA8650-05-5052. Authors also acknowledge additional support from Air Force Office of Scientific Research (Task 2302BR7P, Program manager: Dr. Byung-Lip Lee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Ganguli.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguli, S., Roy, A.K., Wheeler, R. et al. Superior thermal interface via vertically aligned carbon nanotubes grown on graphite foils. Journal of Materials Research 28, 933–939 (2013). https://doi.org/10.1557/jmr.2012.401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.401

Navigation