Skip to main content

Advertisement

Log in

Shape-controlled carbon nanotube architectures for thermal management in aerospace applications

  • Engineered Nanomaterials in Aerospace
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Efficient structural design and thermal management for aerospace structures demand next-generation lightweight thermally conductive and mechanically robust materials to withstand high-velocity impacts and distribute localized heat fluxes from spacecraft components. Notwithstanding the excellent mechanical, electrical, and thermal properties of individual carbon nanotubes (CNTs), bulk CNT-based composites suffer from CNT anisotropy and high interjunction resistance. We provide a brief overview of scalable methods that can tune electrical and thermal connectivity in bulk CNT composites by tuning CNT shape, intertubular bonding, and packing density. These scalable production methods are posited to open new avenues for incorporating CNTs into thermal interface materials, structural reinforcement, and auxiliary power units in the form of energy-storage devices, especially for use in aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Baur, E. Silverman, MRS Bull. 32 (4), 328 (2007).

    Article  CAS  Google Scholar 

  2. R.A. Vaia, Proc. SPIE 8373, 837324 (2012).

    Article  Google Scholar 

  3. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  CAS  Google Scholar 

  4. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  5. T.-Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Nano Lett. 6, 1589 (2006).

    Article  CAS  Google Scholar 

  6. S. Berber, Y. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).

    Article  CAS  Google Scholar 

  7. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B Condens. Matter 59, R2514 (1999).

    Article  CAS  Google Scholar 

  8. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, D.B. Geohegan, Appl. Phys. Lett. 89, 223110 (2006).

    Article  Google Scholar 

  9. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  10. J.R. Lukes, H. Zhong, J. Heat Transfer 129, 705 (2007).

    Article  CAS  Google Scholar 

  11. R. Prasher, Phys. Rev. B Condens. Matter 77, 075424 (2008).

    Article  Google Scholar 

  12. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B Condens. Matter 66, 165440 (2002).

    Article  Google Scholar 

  13. Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011).

    Article  CAS  Google Scholar 

  14. M.R. Arcila-Velez, J. Zhu, A. Childress, M. Karakaya, R. Podila, A.M. Rao, M.E. Roberts, Nano Energy 8, 9 (2014).

    Article  CAS  Google Scholar 

  15. J. Njuguna, K. Pielichowski, Adv. Eng. Mater. 5, 769 (2003).

    Article  CAS  Google Scholar 

  16. H.L. Zhang, P. Sharma, H.T. Johnson, Phys. Rev. B Condens. Matter 75, 155319 (2007).

    Article  Google Scholar 

  17. K. Yang, J. He, P. Puneet, Z. Su, M.J. Skove, J. Gaillard, T.M. Tritt, A.M. Rao, J. Phys. Condens. Matter 22, 334215 (2010).

    Article  Google Scholar 

  18. K. Yang, J. He, Z. Su, J.B. Reppert, M.J. Skove, T.M. Tritt, A.M. Rao, Carbon 48, 756 (2010).

    Article  CAS  Google Scholar 

  19. J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Appl. Phys. Lett. 77, 666 (2000).

    Article  CAS  Google Scholar 

  20. D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Nanotechnology 19, 075609 (2008).

    Article  Google Scholar 

  21. A.V. Krasheninnikov, K. Nordlund, J. Keinonen, F. Banhart, Phys. Rev. B 66, 245403 (2002).

    Article  Google Scholar 

  22. M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P.M. Ajayan, Science 288 (5469), 1226 (2000).

    Article  CAS  Google Scholar 

  23. P. Puneet, R. Podila, S. Zhu, M.J. Skove, T.M. Tritt, J. He, A.M. Rao, Adv. Mater. 25, 1033 (2013).

    Article  CAS  Google Scholar 

  24. P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T.M. Tritt, M.S. Dresselhaus, A.M. Rao, Sci. Rep. 3, 3212 (2013).

    Article  Google Scholar 

  25. D. Saini, H. Behlow, R. Podila, D. Dickel, B. Pillai, M.J. Skove, S.M. Serkiz, A.M. Rao, Sci. Rep. 4, 4 (2014).

    Google Scholar 

  26. K. Akagi, R. Tamura, M. Tsukada, S. Itoh, S. Ihara, Phys. Rev. Lett. 74, 2307 (1995).

    Article  CAS  Google Scholar 

  27. S. Ihara, S. Itoh, J.I. Kitakami, Phys. Rev. B Condens. Matter 48, 5643 (1993).

    Article  CAS  Google Scholar 

  28. W. Wang, K. Yang, J. Gaillard, P.R. Bandaru, A.M. Rao, Adv. Mater. 20, 179 (2008).

    Article  CAS  Google Scholar 

  29. S.H. Park, P. Theilmann, K. Yang, A.M. Rao, P.R. Bandaru, Appl. Phys. Lett. 96, 2 (2010).

    Google Scholar 

  30. R. Thevamaran, M. Karakaya, E.R. Meshot, A. Fischer, R. Podila, A.M. Rao, C. Daraio, RSC Adv. 5, 29306 (2015).

    Article  CAS  Google Scholar 

  31. M. Karakaya, D. Saini, R. Podila, M.J. Skove, A.M. Rao, R. Thevamaran C. Daraio, Adv. Eng. Mater. 7, 990 (2015).

    Article  Google Scholar 

  32. T. Kotani, N. Kawai, S. Chiba, S. Kitamoto, Physica E 29, 505 (2005).

    Article  CAS  Google Scholar 

  33. T.A. DeVol, L. Pruitt, J. Gallaird, L. Sexton, J. Cordaro, A.M. Rao, S.M. Serkiz, Nucl. Instrum. Methods Phys. Res. A 652 (1), 310 (2010).

    Google Scholar 

  34. T. Kotani, M. Ueno, N. Kawai, S. Kitamoto, Physica E 40, 422 (2007).

    Article  CAS  Google Scholar 

  35. M. Karakaya, J. Zhu, A.J. Raghavendra, R. Podila, S.G. Parler Jr., J. Kaplan A.M. Rao, Appl. Phys. Lett. 105, 263103 (2014).

    Article  Google Scholar 

  36. R. Zhou, C. Meng, F. Zhu, Q. Li, C. Liu, S. Fan, K. Jiang, Nanotechnology 21, 345701 (2010).

    Article  Google Scholar 

  37. X. Chen, H. Lin, P. Chen, G. Guan, J. Deng, H. Peng, Adv. Mater. 26 4444 (2014).

    Article  CAS  Google Scholar 

  38. T. Chen, H. Peng, M. Durstock, L. Dai, Sci. Rep. 4, 3612 (2014).

    Article  Google Scholar 

  39. R. Guzman de Villoria, A. John Hart, B.L. Wardle, ACS Nano 5 (6), 4580 (2011).

    Google Scholar 

  40. J. Huang, Q. Zhang, M. Zhao, F. Wei, Chin. Sci. Bull. 57 2, 157 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to their collaborators Profs. Prabhakar Bandaru (University of California at San Diego), Chiara Daraio (ETH Zurich), Jian He (Clemson University), and Terry M. Tritt (Clemson University) for their support in the mechanical and thermal characterization of CNT materials. Our work on the scalable manufacturing of CNTs was supported by National Science Foundation CMMI Award 1246800. We dedicate this article to the late Dr. A.P.J. Abdul Kalam, who played a pivotal role in the development of ballistic and launch vehicle technologies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puneet, P., Rao, A.M. & Podila, R. Shape-controlled carbon nanotube architectures for thermal management in aerospace applications. MRS Bulletin 40, 850–855 (2015). https://doi.org/10.1557/mrs.2015.229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.229

Navigation