Skip to main content
Log in

Biomimetic calcium carbonate-gelatin composites as a model system for eggshell mineralization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The composite nature of mineralized natural materials is achieved through both the microstruc-tural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macro molecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3-gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3-gelatin composite from infrared spectra. Second, a CaCO3-gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1–10%, similar to that of natural eggshell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Table I

Similar content being viewed by others

References

  1. G. Hunter: Interfacial aspects of biomineralization. Curr. Opin. Solid State Mater. Sci. 1(3), 430–435 (1996).

    Article  CAS  Google Scholar 

  2. F. Barthelat and H.D. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47(3), 311–324 (2007).

    Article  Google Scholar 

  3. J. Aizenberg, G. Lambert, S. Weiner, and L. Addadi: Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Am. Chem. Soc. 124(1), 32–39 (2002).

    Article  CAS  Google Scholar 

  4. L. Gower: Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210(4), 719–734 (2000).

    Article  CAS  Google Scholar 

  5. M.S. Fernandez, K. Passalacqua, J.I. Arias, and J.L. Arias: Partial biomimetic reconstitution of avian eggshell formation. J. Struct. Biol. 148(1), 1–10 (2004).

    Article  CAS  Google Scholar 

  6. F. Shen: The modulation of collagen on crystal morphology of calcium carbonate. J. Cryst. Growth 242(1-2), 239–244 (2002).

    Article  CAS  Google Scholar 

  7. L. Addadi and S. Weiner: Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc. Nat. Acad. Sci. U.S.A. 82(12), 4110–4114 (1985).

    Article  CAS  Google Scholar 

  8. S. Elhadj, E.A. Salter, A. Wierzbicki, J.J. De Yoreo, N. Han, and P.M. Dove: Peptide controls on calcite mineralization: Polyaspar-tate chain length affects growth kinetics and acts as a stereochemical switch on morphology. Cryst. Growth Des. 6(1), 197–201 (2006).

    Article  CAS  Google Scholar 

  9. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Tough, bio-inspired hybrid materials. Science 322(5907), 1516–1520 (2008).

    Article  CAS  Google Scholar 

  10. T. Taguchi, A. Kishida, and M. Akashi: Hydroxyapatite formation on/in poly (vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem. Lett. 27(8), 711–712 (1998).

    Article  Google Scholar 

  11. T. Taguchi, A. Kishida, and M. Akashi: Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. J. Biomater. Sci., Polym. Ed. 10(3), 331–339 (1999).

    Article  CAS  Google Scholar 

  12. T. Taguchi, A. Kishida, and M. Akashi: Apatite formation on/in hydrogel matrices using an alternate soaking process (III): Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J. Biomater. Sci., Polym. Ed. 10(8), 795–804 (1999).

    Article  CAS  Google Scholar 

  13. J. Watanabe and M. Akashi: Integration approach for developing a high-performance biointerface: Sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process. Appl. Surf. Sci. 255(2), 344–349 (2008).

    Article  CAS  Google Scholar 

  14. I. Yamaguchi, T. Kogure, M. Sakane, S. Tanaka, A. Osaka, and J. Tanaka: Microstructure analysis of calcium phosphate formed in tendon. J. Mater. Sci. - Mater. Med. 14(10), 883–889 (2003).

    Article  CAS  Google Scholar 

  15. H-S. Yu, J-H. Jang, T-I. Kim, H-H. Lee, and H-W. Kim: Apatite-mineralized polycaprolactone nanoribrous web as a bone tissue regeneration substrate. J. Biomed. Mater. Res. Part A 88(3), 747–754 (2009).

    Article  Google Scholar 

  16. D. Ogomi, T. Serizawa, and M. Akashi: Bioinspired organic-inorganic composite materials prepared by an alternate soaking process as a tissue reconstitution matrix. J. Biomed. Mater. Res. Part A 67(4), 1360–1366 (2003).

    Article  Google Scholar 

  17. J. Watanabe and M. Akashi: Formation of hydroxyapatite provides a tunable protein reservoir within porous polyester membranes by an improved soaking process. Biomacromolecules 8(7), 2288–2293 (2007).

    Article  CAS  Google Scholar 

  18. D. Ogomi, T. Serizawa, and M. Akashi: Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels. J. Controlled Release 103(2), 315–323 (2005).

    Article  CAS  Google Scholar 

  19. T. Serizawa, T. Tateishi, and M. Akashi: Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films. J. Biomater. Sci., Polym. Ed. 14(7), 653–663 (2003).

    Article  CAS  Google Scholar 

  20. D.G.T. Strange and M.L. Oyen: Biomimetic bone-like composites fabricated through an automated alternate soaking process. Acta Biomater. 7(10), 3586–3594 (2011).

    Article  CAS  Google Scholar 

  21. M. Panheleux, Y. Nys, J. Williams, J. Gautron, T. Boldicke, and M.T. Hincke: Extraction and quantification by ELISA of eggshell organic matrix proteins (ovocleidin-17, ovalbumin, ovotransferrin) in shell from young and old hens. Poult. Sci. 79(4), 580–588 (2000).

    Article  CAS  Google Scholar 

  22. M.L.H. Rose and M.T. Hincke: Protein constituents of the eggshell: Eggshell-specific matrix proteins. Cell. Mol. Life Sci. 66(16), 2707–2719 (2009).

    Article  CAS  Google Scholar 

  23. P. Hunton: Research on eggshell structure and quality: An historical overview. Rev. Bras, de Ciencia Avicola 7(2), 67–71 (2005).

    Article  Google Scholar 

  24. D. Jin, F. Wang, and L. Yue: Phase and morphology evolution of vaterite crystals in water/ethanol binary solvent. Cryst. Res. Technol. 46(2), 140–144 (2011).

    Article  CAS  Google Scholar 

  25. K-S. Seo, C. Han, J-H. Wee, J-K. Park, and J-W. Ahn: Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent. J. Cryst. Growth 276(3-4), 680–687 (2005).

    Article  CAS  Google Scholar 

  26. F. Manoli and E. Dalas: Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth 218(2-4), 359–364 (2000).

    Article  CAS  Google Scholar 

  27. M.D. Abramoff, P.J. Magelhaes, and S.J. Ram: Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004).

    Google Scholar 

  28. D. Haaland: Application of new least-squares methods for the quantitative infrared analysis of multicomponent samples. Appl. Spectrosc. 36(6), 665–673 (1982).

    Article  CAS  Google Scholar 

  29. G.J.B. Jackson: Infrared Transmission Spectra of Carbonate Minerals (Chapman & Hall, London, UK, 1993).

    Google Scholar 

  30. W.B. Farmer: The carbonate minerals, in The Infrared Spectra of Minerals (Mineralogical Society of London Monograph, London, UK, 1974).

    Chapter  Google Scholar 

  31. S. Krimm and J. Bandekar: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Biopolymers 22(1), 217–225 (1983).

    Article  CAS  Google Scholar 

  32. J.L. Arias, M.S. Fernandez, J.E. Dennis, and A.I. Caplan: Collagens of the chicken eggshell membranes. Connect. Tissue Res. 26(1-2), 37–45 (1991).

    Article  CAS  Google Scholar 

  33. M.S. Fernandez, M. Araya, and J.L. Arias: Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol. 16(1), 13–20 (1997).

    Article  CAS  Google Scholar 

  34. J-P. Andreassen: Formation mechanism and morphology in precipitation of vaterite, nano-aggregation or crystal growth? J. Cryst. Growth 274(1-2), 256–264 (2005).

    Article  CAS  Google Scholar 

  35. T.M. Wu, J.P. Rodriguez, D.J. Fink, D.A. Carrino, J. Blackwell, A.I. Caplan, and A.H. Heuer: Crystallization studies on avian eggshell membranes: Implications for the molecular factors controlling eggshell formation. Matrix Biol. 14(6), 507–513 (1995).

    Article  CAS  Google Scholar 

  36. M. Pines, V. Knopov, and A. Bar: Involvement of osteopontin in egg shell formation in the laying chicken. Matrix Biol. 14(9), 765–771 (1995).

    Article  CAS  Google Scholar 

  37. L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, and S. Weiner: A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc. Nat. Acad. Sci. U.S.A. 84(9), 2732–2736 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armitage, O.E., Strange, D.G.T. & Oyen, M.L. Biomimetic calcium carbonate-gelatin composites as a model system for eggshell mineralization. Journal of Materials Research 27, 3157–3164 (2012). https://doi.org/10.1557/jmr.2012.379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.379

Navigation