Skip to main content
Log in

Fabrication of two-dimensional disordered copper 1,3,5-tricarboxylate film by vapor–solid method

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) disordered copper 1,3,5-tricarboxylate film on copper foil was first reported in this paper. In the x-ray powder diffraction pattern of the as-prepared film, there were only two diffraction peaks exist in d value of 6.60 and 3.32 Å, which were correspond to the (400) and (800) diffractions of bulk HKUST-1, respectively. And the d value of 6.60 Å in bulk HKUST-1 is very close to the thickness of one-layered Cu2+ plus one-layered C9H3O63− (6.59 Å). The structure of as-prepared film was proved to be 2D disordered copper 1,3,5-tricarboxylate film. The periodical stacking of Cu2+ and C9H3O63−is perpendicular to the substrate. There is no periodic structure within the layer. Scanning electron microscopy, transmission electron microscope (TEM), high-resolution transmission electron microscope, infrared, Raman, and x-ray photoelectron spectrometer supported this result. This kind of disorder probably also existed in the reported HKUST-1 film that shows strong (400) diffraction in x-ray diffraction (XRD) pattern. This result probably explains why (400) diffraction in XRD pattern of reported synthesized HKUST-1 film is anomalously strong. This strategy is simple. No seed, no pretreated solvothermal mother liquors, and no specific functionalization are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

REFERENCES

  1. S. Kitagawa, R. Kitaura, and S. Noro: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334 (2004).

    Article  CAS  Google Scholar 

  2. M. O’Keeffe, M. Eddaoudi, H.L. Li, T. Reineke, and O.M. Yaghi: Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152(1), 3 (2000).

    Article  Google Scholar 

  3. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005).

    Article  Google Scholar 

  4. Y.B. Zhang, H.L. Zhou, R.B. Lin, C. Zhang, J.B. Lin, J.P. Zhang, and X.M. Chen: Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nat. Commun. 3, 642 (2012).

    Article  Google Scholar 

  5. L. Alaerts, C.E.A. Kirschhock, M. Maes, M.A. van der Veen, V. Finsy, A. Depla, J.A. Martens, G.V. Baron, P.A. Jacobs, J.F.M. Denayer, and D.E. De Vos: Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293 (2007).

    Article  CAS  Google Scholar 

  6. J.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, and J. Li: Microporous metal-organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 17, 1255 (2007).

    Article  CAS  Google Scholar 

  7. R-Q. Zou, H. Sakurai, S. Han, R-Q. Zhong, and Q. Xu: Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)]. J. Am. Chem. Soc. 129, 8402 (2007).

    Article  CAS  Google Scholar 

  8. T.K. Maji, R. Matsuda, and S. Kitagawa: A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat. Mater. 6, 142 (2007).

    Article  CAS  Google Scholar 

  9. S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, and I.D. Williams: A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148 (1999).

    Article  CAS  Google Scholar 

  10. H.L. Guo, G.S. Zhu, I.J. Hewitt, and S.L. Qiu: “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646 (2009).

    Article  CAS  Google Scholar 

  11. Q.M. Wang, D.M. Shen, M. Bülow, M.L. Lau, S.G. Deng, F.R. Fitch, N.O. Lemcoff, and J. Semanscin: Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 55, 217 (2002).

    Article  CAS  Google Scholar 

  12. A.I. Skoulidas: Molecular dynamics simulations of gas diffusion in metal-organic frameworks: Argon in CuBTC. J. Am. Chem. Soc. 126, 1356 (2004).

    Article  CAS  Google Scholar 

  13. Q.Y. Yang, C.Y. Xue, C.L. Zhong, and J.F. Chen: Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. AIChE J. 53, 2832 (2007).

    Article  CAS  Google Scholar 

  14. S. Keskin, J.C. Liu, J.K. Johnson, and D.S. Sholl: Atomically detailed models of gas mixture diffusion through CuBTC membranes. Microporous Mesoporous Mater. 125, 101 (2009).

    Article  CAS  Google Scholar 

  15. K. Szelagowska-Kunstman, P. Cyganik, M. Goryl, D. Zacher, Z. Puterova, R.A. Fischer, and M. Szymonski: Surface structure of metal-organic framework grown on self-assembled monolayers revealed by high-resolution atomic force microscopy. J. Am. Chem. Soc. 130, 14446 (2008).

    Article  CAS  Google Scholar 

  16. M.D. Allendorf, R.J.T. Houk, L. Andruszkiewicz, A.A. Talin, J. Pikarsky, A. Choudhury, K.A. Gall, and P.J. Hesketh: Stress-induced chemical detection using flexible metal-organic frameworks. J. Am. Chem. Soc. 130, 14404 (2008).

    Article  CAS  Google Scholar 

  17. E. Biemmi, C. Scherb, and T. Bein: Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054 (2007).

    Article  CAS  Google Scholar 

  18. A. Schoedel, C. Scherb, and T. Bein: Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis. Angew. Chem. Int. Ed. 49, 7225 (2010).

    Article  CAS  Google Scholar 

  19. E. Biemmi, A. Darga, N. Stock, and T. Bein: Direct growth of Cu3(BTC)2(H2O)3·xH2O thin films on modified QCM-gold electrodes water sorption isotherms. Microporous Mesoporous Mater. 114, 380 (2008).

    Article  CAS  Google Scholar 

  20. V.V. Guerrero, Y. Yoo, M.C. McCarthy, and H-K. Jeong: HKUST-1 membranes on porous supports using secondary growth. J. Mater. Chem. 20, 3938 (2010).

    Article  CAS  Google Scholar 

  21. R. Ameloot, E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, and D.E. De Vos: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685 (2010).

    Article  CAS  Google Scholar 

  22. R. Ameloot, L. Pandey, M.V. Auweraer, L. Alaerts, B.F. Sels, and D.E. De Vos: Patterned film growth of metal–organic frameworks based on galvanic displacement. Chem. Commun. 46, 3735 (2010).

    Article  CAS  Google Scholar 

  23. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, and D.E. De Vos: Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580 (2009).

    Article  CAS  Google Scholar 

  24. J. Gascon, S. Aguado, and F. Kapteijn: Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132 (2008).

    Article  CAS  Google Scholar 

  25. J-L. Zhuang, D. Ceglarek, S. Pethuraj, and A. Terfort: Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 21, 1442 (2011).

    Article  CAS  Google Scholar 

  26. O. Shekhah, J. Liu, R.A. Fischerb, and C. Wöll: MOF thin films: Existing and future applications. Chem. Soc. Rev. 40, 1081 (2011).

    Article  CAS  Google Scholar 

  27. Z-Q. Li, L-G. Qiu, T. Xu, Y. Wu, W. Wang, Z-Y. Wu, and X. Jiang: Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 63, 78 (2009).

    Article  CAS  Google Scholar 

  28. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R.A. Fischer, and C. Wöll: Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118 (2007).

    Article  CAS  Google Scholar 

  29. D. Zacher, O. Shekhah, C. Wöll, and R.A. Fischer: Thin films of metal-organic frameworks. Chem. Soc. Rev. 38, 1418 (2009).

    Article  CAS  Google Scholar 

  30. D. Zacher, J. Liu, K. Huber, and R.A. Fischer: Nanocrystals of [Cu3(btc)2](HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 45, 1031 (2009).

    Article  Google Scholar 

  31. J.P. Nan, X.L. Dong, W.J. Wang, W.Q. Jin, and N.P. Xu: Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support. Langmuir 27, 4309 (2011).

    Article  CAS  Google Scholar 

  32. W.X. Zhang, X.G. Wen, S.H. Yang, Y. Berta, and Z.L. Wang: Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 15, 822 (2003).

    Article  CAS  Google Scholar 

  33. X.G. Wen, S.H. Wang, Y.T. Xie, X-Y. Li, and S.H. Yang: Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates. J. Phys. Chem. B 109, 10100 (2005).

    Article  CAS  Google Scholar 

  34. JCPDF Card No. 50–0663.

  35. C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug, and S. Bordiga: Local structure of framework Cu(II) in HKUST-1 metal-organic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater. 18, 1337 (2006).

    Article  CAS  Google Scholar 

  36. J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, J. Westerink, and G.A. Sawatzky: Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322 (1988).

    Article  CAS  Google Scholar 

  37. S.K. Chawla, N. Sankarraman, and J.H. Payer: Diagnostic spectra for XPS analysis of Cu-O-S-H compounds. J. Electron. Spectrosc. Relat. Phenom. 61, 1 (1992).

    Article  CAS  Google Scholar 

  38. W.X. Zhang and S.H. Yang: In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc. Chem. Res. 42(10), 1617 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by “the Fundamental Research Funds for the Central Universities” (Grant No. 11lgpy10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Qiao.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting {rs|http://journals.cambridge.org/jmr|url|}.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Qi, Y. & Qiao, Z. Fabrication of two-dimensional disordered copper 1,3,5-tricarboxylate film by vapor–solid method. Journal of Materials Research 27, 2911–2915 (2012). https://doi.org/10.1557/jmr.2012.336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.336

Navigation