Skip to main content
Log in

Instrumented indentation testing of arsenic triselenide–arsenic triiodide pseudobinary glasses with copper

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this research, we performed experimental investigations of the influence of copper presence on hardness of arsenic triselenide (As2Se3)–arsenic triiodide (AsI3) pseudobinary glasses. The samples belong to the group of chalcogenide glasses, that, when compared with oxide glasses, can be synthesized much more easily in a wide variety of compositions, allowing also fine-tuning of their properties. Here, presence of iodine (I) facilitates glass formation, whereas addition of copper (Cu) creates possibility for interesting optoelectronic properties. As it is important to study mechanical properties of materials with respect to their fabrication and manipulation, we report results of instrumented indentation testing (IIT) of bulk samples of Cux[(As2Se3)0.9(AsI3)0.1]100−x with x = 5, 10, 20, and 25 at.% of Cu. This technique enables fast determination of indentation hardness, hardness value according to Vickers and indentation modulus directly from the indentation load–displacement curves. It was shown that all these parameters increase linearly with the increase of copper content. Improvement of the mechanical properties justifies the addition of Cu into the glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

REFERENCES

  1. N.F. Mott and E.A. Davis: Electronic Processes in Noncrystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979).

    Google Scholar 

  2. M.A. Popescu: Noncrystalline Chalcogenides (Kluwer Academic Publishers, New York, 2002).

    Google Scholar 

  3. J.T. Krause, C.R Kurkjian, D.A. Pinnow, and E.S. Sigety: Low acoustic loss chalcogenide glasses–a new category of materials for acoustic and acousto optic applications. Appl. Phys. Lett. 17, 367 (1970).

    Article  CAS  Google Scholar 

  4. I. Manika and J. Teteris: Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films. J. Non-Cryst. Solids 90, 505 (1987).

    Article  CAS  Google Scholar 

  5. D.M. Petrović, S.R. Lukić, M.I. Avramov, and V.V. Khiminets: Synthesis and the absorption spectra of Ge-As-S-Se-I system glass. J. Mater. Sci. Lett. 5, 290 (1986).

    Article  Google Scholar 

  6. S. Charnovych, G. Erdélyi, S. Kokenyesi, and A. Csik: Effect of pressure on photoinduced expansion of As0.2Se0.8 layer. J. Non-Cryst. Solids 357, 2349 (2011).

    Article  CAS  Google Scholar 

  7. S.R. Lukić, D.M. Petrović, I. Turyantisa, and O.V. Khiminets: Characteristics of optical recording on thin films of quaternary glasses Cu-As-Se-I. J. Mater. Sci. 26, 5517 (1991).

    Article  Google Scholar 

  8. J.S. Sanghera, C.M. Florea, L.B. Shaw, P. Purées, V.Q. Nguyen, M. Bashkansky, Z. Dutton, and I.D. Aggarwal: Nonlinear properties of chalcogenide glasses and fibers. J. Non-Cryst. Solids 354, 462 (2008).

    Article  CAS  Google Scholar 

  9. S.R. Lukić, F. Skuban, D.M. Petrović, and L. Šiđanin: Effect of copper on density and microhardness of amorphous AsSeyIz. J. Mater. Sci. Lett. 19, 139 (2000).

    Article  Google Scholar 

  10. S.R. Lukić, D.M. Petrović, F. Skuban, L. Šiđanin, and I.O. Gúth: The morphologies of fractured surfaces and fracture toughness in some As-Se-Sb-S-I glasses. Appl. Surf. Sci. 252, 7917 (2006).

    Article  Google Scholar 

  11. D. Štrbac: Characterization of metal-chalcogenides films from Cu-AsSeyIz system. Ph.D. Thesis, University of Novi Sad, Faculty of Sciences, Novi Sad, 2011.

    Google Scholar 

  12. A. Feltz: Amorphous and Glassy Inorganic Solids (Akademie-Verlag, Berlin, 1983) [in German].

    Google Scholar 

  13. M. Frumar, B. Frumarova, and T. Wagner: Amorphous and glassy semiconducting chalcogenides. In Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, and H. Kamimura, eds. (Elsevier B.V., Amsterdam, Netherlands, 2011); pp. 206–261.

    Chapter  Google Scholar 

  14. V.S. Vassilev and S.V. Boycheva: Chemical sensors with chalcogenide glassy membranes. Talanta 67, 20 (2005).

    Article  CAS  Google Scholar 

  15. J-L. Adam: Lanthanides in nonoxide glasses. Chem. Rev. 102, 2461 (2002).

    Article  CAS  Google Scholar 

  16. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  18. N.A. Sakharova, J.V. Fernandes, J.M. Antunes, and M.C. Oliveira: Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095 (2009).

    Article  Google Scholar 

  19. M. Cabibbo, P. Ricci, R. Cecchini, Z. Rymuza, J. Sullivan, S. Dub, and S. Cohen: An international round-robin calibration protocol for nanoindentation measurements. Micron 43, 215 (2012).

    Article  CAS  Google Scholar 

  20. C. Ullner, J. Beckmann, and R. Morrell: Instrumented indentation test for advanced technical ceramics. J. Eur. Ceram. Soc. 22, 1183 (2002).

    Article  CAS  Google Scholar 

  21. ISO/DIN 14583: Instrumented Indentation Test for Hardness and Other Materials Parameter (2000).

    Google Scholar 

  22. J. Gong and Y. Li: An energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 35, 209 (2000).

    Article  CAS  Google Scholar 

  23. K. Sangwal, B. Surowska, and P. Blaziak: Analysis of the indentation size effect in the microhardness measurement of some cobalt-based alloys. Mater. Chem. Phys. 77, 511 (2002).

    Article  Google Scholar 

  24. Z. Peng, J. Gong, and H. Miao: On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. J. Eur. Ceram. Soc. 24, 2193 (2004).

    Article  CAS  Google Scholar 

  25. T. Kavetskyy, J. Borc, and K. Sangwal: Study of indentation microhardness of bismuth-doped As2Se3 glasses. Optoelectron. Adv. Mater. Rapid Commun. 5, 755 (2011).

    CAS  Google Scholar 

  26. J.B. Quinn, V.Q. Nguyen, J.S. Sanghera, I.K. Lloyd, P.C. Pureza, R.E. Miklos, and I.D. Aggarwal: Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers. J. Non-Cryst. Solids 325, 150 (2003).

    Article  CAS  Google Scholar 

  27. S.R. Lukić, D.M. Petrović, I.O. Gut, and M.I. Avramov: Complex noncrystalline chalcogenides: Technology of preparation and spectral characteristics. J. Res. Phys. 30, 111 (2006).

    Google Scholar 

  28. S.R. Lukić and D.M. Petrović: Thermal analysis and x-ray diffraction investigation of the copper (I) selenoarsenate (Cu3AsSe4). J. Optoelectron. Adv. Mater. 1, 43 (1999).

    Google Scholar 

  29. S.R. Lukić, D.M. Petrović, A.F. Petrović, and Ž.N. Popović: A study of the structural units in some amorphous semiconductors of the Cu-As-Se-I system by x-ray analysis. Mater. Sci. Forum 321–324, 525 (2000).

    Article  Google Scholar 

  30. Handbook of Chemistry and Physics, 55th ed.; R.D. Weast ed.; CRC Press, Cleveland 1974–1975; p. F–207.

    Google Scholar 

  31. S.R. Lukić and D.M. Petrović: Complex Amorphous Chalcogenides (University of Novi Sad, Faculty of Sciences, Novi Sad, 2002), p. 72 [in Serbian].

    Google Scholar 

  32. E.L. Bourhis, P. Gadaud, J-P. Guin, N. Tournerie, X.H. Zhang, J. Lucas, and T. Rouxel: Temperature dependence of the mechanical behavior of a GeAsSe glass. Scr. Mater. 45, 317 (2001).

    Article  Google Scholar 

  33. J-P. Guin, T. Rouxel, V. Keryvin, J-C. Sangleboeuf, I. Serre, and J. Lucas: Indentation creep of Ge-Se chalcogenide glasses below Tg: Elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids 298, 260 (2002).

    Article  CAS  Google Scholar 

  34. J-P. Guin, T. Rouxel, J-C. Sangleboeuf, I. Melscoët, and J. Lucas: Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002).

    Article  CAS  Google Scholar 

  35. H. Li and R.C. Brad: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).

    Article  CAS  Google Scholar 

  36. J.B. Quinn and G.D. Quinn: Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 32, 4331 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Authors acknowledge the financial support of the Ministry of Education and Science of the Republic of Serbia within the Project No. 171022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica R. Đačanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukić-Petrović, S.R., Đačanin, L.R., Kisić, R.V. et al. Instrumented indentation testing of arsenic triselenide–arsenic triiodide pseudobinary glasses with copper. Journal of Materials Research 27, 2867–2871 (2012). https://doi.org/10.1557/jmr.2012.330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.330

Navigation