Skip to main content
Log in

Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Positron annihilation lifetime measurements are performed for sol–gel-derived 70 mol% SiO2–30 mol% CaO bioactive glass. Strong positronium formation processes are shown to be an inherent feature for these kinds of materials. Observed orthopositronium (o-Ps) lifetimes show a three-modal distribution with lifetime values weighed at ∼2, ∼18, and ∼70 ns. The exposure of the investigated sol–gel-derived bioactive glasses to water vapor significantly modifies o-Ps lifetime distribution due to the penetration of water molecules into the nanopores, indicating high ratio of their interconnectivity. Classic Tao–Eldrup equation is used to relate the o-Ps lifetimes with the size of nanopores, whose distribution is verified by nitrogen adsorption porosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. R. Li, A.E. Clark, and L.L. Hench: An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 2, 231 (1991).

    Article  CAS  Google Scholar 

  2. J.R. Jones, O. Tsigkou, E.E. Coates, M.M. Stevens, J.M. Polak, and L.L. Hench: Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28, 1653 (2007).

    Article  CAS  Google Scholar 

  3. A.C. Marques, R. Almeida, A. Thiema, S. Wang, M.M. Falk, and H. Jain: Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J. Mater. Res. 24, 3495 (2009).

    Article  CAS  Google Scholar 

  4. S. Wang, M.M. Falk, A. Rashad, M.M. Saad, A.C. Marques, R.M. Almeida, M.K. Marei, and H. Jain: Evaluation of 3D nano/macroporous bioactive glass scaffold for hard tissue engineering. J. Mater. Sci. - Mater. Med. 22, 1195 (2011).

    Article  CAS  Google Scholar 

  5. P. Sepulveda, J.R. Jones, and L.L. Hench: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340 (2002).

    Article  CAS  Google Scholar 

  6. D. Zhang, H. Jain, M. Hupa, and L. Hupa: In vitro degradation and bioactivity of tailored amorphous multi porous (TAMP) scaffold structure. J. Am. Ceram. Soc. (2012, in press).

    Google Scholar 

  7. V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).

    Article  CAS  Google Scholar 

  8. K. Nakanishi: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67 (1997).

    Article  CAS  Google Scholar 

  9. A. Yachi, R. Takahashi, S. Sato, T. Sodesawa, K. Oguma, K. Matsutani, and N. Mikami: Silica gel with continuous macropores prepared from water glass in the presence of poly(acrylic acid). J. Non-Cryst. Solids 351, 331 (2005).

    Article  CAS  Google Scholar 

  10. J.R. Jones, L.M. Ehrenfried, and L.L. Hench: Optimizing bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964 (2006).

    Article  CAS  Google Scholar 

  11. H. Maekawa, J. Esquena, S. Bishop, C. Solans, and B.F. Chmelka: Meso/macroporous inorganic oxide monoliths from polymer, foams. Adv. Mater. 15, 591 (2003).

    Article  CAS  Google Scholar 

  12. W. Liang and C. Russel: Porous glass scaffolds by a salt sintering process. J. Mater. Sci. 41, 3787 (2006).

    Article  CAS  Google Scholar 

  13. H.M. Moawad and H. Jain: Fabrication ofnano/macro porous glass-ceramic bioscaffold with a water-soluble pore former. J. Mater. Sci. - Mater. Med. 23, 307 (2012).

    Article  CAS  Google Scholar 

  14. H. Yun, S. Kim, and Y. Hyeon: Design and preparation of bioactive glasses with hierarchical pore networks. Chem. Commun. 21, 2139 (2007).

    Article  Google Scholar 

  15. A.C. Marques, H. Jain, and R.M. Almeida: Sol-gel derived nano/macroporous scaffolds. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol., Part B 48, 65 (2007).

    CAS  Google Scholar 

  16. P.A. Webb and C. Orr: Analytical Methods in Fine Particle Technology (Micromeritics Instrument Corporation, Norcross, 1997).

    Google Scholar 

  17. S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  18. E.P. Barrett, L.G. Joyner, and P.P. Halenda: The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  19. R.W. Rice: Evaluation of extension of physical property-porosity models based on minimum solid area. J. Mater. Sci. 31, 102 (1996).

    Article  CAS  Google Scholar 

  20. G. Ondracek: Human, medicine and materials: Biomaterials. Keram. Z. 40, 169 (1988).

    CAS  Google Scholar 

  21. R. Krause-Rehberg and H. Leipner: Positron Annihilation in Semiconductors (Springer, Heidelberg, 1999).

    Book  Google Scholar 

  22. Y.C. Jean, P.E. Mallon, and D.M. Schrader: Principles and Application of Positron and Positronium Chemistry (World Scientific, Singapore, 2003).

    Book  Google Scholar 

  23. O.E. Mogensen: Positron Annihilation in Chemistry (Springer, Berlin, 1995).

    Book  Google Scholar 

  24. H. Nakanishi, Y.C. Jean, D.M. Schrader, and Y.C. Jean: In Positron and Positronium Chemistry (Elsevier, Amsterdam, 1998).

    Google Scholar 

  25. G. Dlubek, Sen A. Gupta, J. Pionteck, R. Hassler, Krause-R. Rehberg, H. Kaspar, and K.H. Lochhaas: High-pressure dependence of the free volume in fluoroelastomers from positron lifetime and PVT experiments. Polymer 46, 6075 (2005).

    Article  CAS  Google Scholar 

  26. O. Shpotyuk and J. Filipecki: Free volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study (WWSzP, Czestochowa, 2003). ISBN 83-7098-984-5.

    Google Scholar 

  27. Y. Vueva, A. Gama, A.V. Teixeira, R.M. Almeida, S. Wang, M.M. Falk, and H. Jain: Monolithic glass scaffolds with dual porosity prepared by polymer-induced phase separation and sol–gel. J. Am. Ceram. Soc. 93, 1945 (2010).

    CAS  Google Scholar 

  28. J. Kansy: Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A 374, 235 (1996).

    Article  CAS  Google Scholar 

  29. S.J. Tao: Positronium annihilation in molecular substance. J. Chem. Phys. 56, 5499 (1972).

    Article  CAS  Google Scholar 

  30. M. Eldrup, D. Lightbody, and J.N. Sherwood: The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63, 51 (1981).

    Article  CAS  Google Scholar 

  31. T. Goworek, K. Ciesieslski, B. Jasinska, and J. Wawryszczuk: Positronium states in the pores of silica gel. Chem. Phys. 230, 305 (1998).

    Article  CAS  Google Scholar 

  32. N. Djourelov, T. Suzuki, V. Shantarovich, and K. Kondo: Positronium formation in sol-gel-prepared silica-based glasses: Temperature and positron-irradiation effect. Radiat. Phys. Chem. 72, 723 (2005).

    Article  CAS  Google Scholar 

  33. M. Misheva, N. Djourelov, F.M.A. Margaca, and Miranda I.M. Salvado: Positronium decay of zirconia-silica sol-gels. J. Non-Cryst. Solids 272, 209 (2000).

    Article  CAS  Google Scholar 

  34. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman: Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Phys. Status Solidi C 4, 715 (2007).

    Article  CAS  Google Scholar 

  35. D. Dutta, S. Chatterjee, K.T. Pujari, and B.N. Ganguly: Pore structure of silica gel: A comparative study through BET and PALS. Chem. Phys. 312, 319 (2005).

    Article  CAS  Google Scholar 

  36. D.W. Gidley, W.E. Frieze, T.L. Dull, A.F. Yee, E.T. Ryen, and H.M. Ho: Positronium annihilation in mesoporous thin films. Phys. Rev. B 60, R5157 (1999).

    Article  CAS  Google Scholar 

  37. A.K. Varshneya: Fundamentals of Inorganic Glasses, 2nd ed. (Society of Glass Technology, Sheffield, UK, 2006).

    Google Scholar 

  38. A.C. Marques, H. Jain, C. Kiely, K. Song, C.J. Kiely, and R.M. Almeida: Nano/macroporous monolithic scaffolds prepared by the sol–gel method. J. Sol-Gel Sci. Technol. 51, 42 (2009).

    Article  CAS  Google Scholar 

  39. L.L. Hench and J.K. West: The sol-gel process. Chem. Rev. 90, 33 (1990).

    Article  CAS  Google Scholar 

  40. W.F. Magalhaes, J.C. Abbe, and G. Duplatre: Solvent and temperature effects on positronium annihilation parameters and on its quenching reactions with the free radical HTEMPO. Struct. Chem. 2, 399 (1991).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank U.S. National Science Foundation through IMI-NFG (Grant No. DMR-0844014), for initiating the international collaboration and providing partial financial support for this work. SW and HJ thank the National Science Foundation for support via the Materials World Network (DMR-0602975) program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Golovchak.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovchak, R., Wang, S., Jain, H. et al. Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses. Journal of Materials Research 27, 2561–2567 (2012). https://doi.org/10.1557/jmr.2012.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.252

Navigation