Skip to main content
Log in

Effect of A-site substitution on electrical conductivity and microstructure of YAlO3

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic evaluation of the electrical conductivity of Sr-substituted YAlO3 system has been performed. A comparison between the Ca- and Sr-doped YAlO3 systems is reported. The samples have been synthesized by citrate gel route, and the electrical conductivity measurements have been conducted in air in the 300–800 °C temperature range. The influence of phase development of the compositions on the total conductivity has been investigated using the x-ray diffraction technique. Also, the effect of microstructure and composition of the phases evolved on the electrical conductivity has been analyzed using scanning electron microscopy and energy dispersive spectrum techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.B. Owens: Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources 90(1), 2 (2000).

    Article  CAS  Google Scholar 

  2. A.B. Stambouli and E. Traversa: Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable Sustainable Energy Rev. 6(5), 433 (2002).

    Article  CAS  Google Scholar 

  3. O. Yamamoto: Solid oxide fuel cells: Fundamental aspects and prospects. Electrochim. Acta 45(15–16), 2423 (2000).

    Article  CAS  Google Scholar 

  4. B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345 (2001).

    Article  CAS  Google Scholar 

  5. V.V. Kharton, F.M.B. Marques, and A. Atkinson: Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ionics 174(1–4), 135 (2004).

    Article  CAS  Google Scholar 

  6. J.A. Kilner: Fast anion transport in solids. Solid State Ionics 8(3), 201 (1983).

    Article  CAS  Google Scholar 

  7. S. Nakayama and M. Sakamoto: Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J. Eur. Ceram. Soc. 18(10), 1413 (1998).

    Article  CAS  Google Scholar 

  8. M. Feng and J.B. Goodenough: A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem. 31(8–9), 663 (1994).

    CAS  Google Scholar 

  9. K. Huang and J.B. Goodenough: A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: The role of a rare-earth oxide buffer. J. Alloys Compd. 303-302, 454 (2000).

    Article  Google Scholar 

  10. J.W. Fergus: Electrolytes for solid oxide fuel cells. J. Power Sources 162(1), 30 (2006).

    Article  CAS  Google Scholar 

  11. E. Djurado and M. Labeau: Second phases in doped lanthanum gallate perovskites. J. Eur. Ceram. Soc. 18(10), 1397 (1998).

    Article  CAS  Google Scholar 

  12. N.M. Sammes, F.M. Keppeler, H. Näfe, and F. Aldinger: Mechanical properties of solid-synthesized strontium- and magnesium-doped lanthanum gallate. J. Am. Ceram. Soc. 81, 3104 (1998).

    Article  CAS  Google Scholar 

  13. K. Yamaji, H. Negishi, T. Horita, N. Sakai, and H. Yokokawa: Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics 135, 389 (2000).

    Article  CAS  Google Scholar 

  14. S. Geller and V.B. Bala: Crystallographic studies of perovskite-like compounds. II. Rare earth alluminates. Acta Crystallogr. 9, 1019 (1956).

    Article  CAS  Google Scholar 

  15. D. Lybye, F.W. Poulsen, and M. Mogensen: Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics 128(1), 91 (2000).

    Article  CAS  Google Scholar 

  16. C.B. Alcock, J.W. Fergus, and L. Wang: The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earth oxides. Solid State Ionics 51(3–4), 291 (1992).

    Article  CAS  Google Scholar 

  17. J.A. Kilner, P. Barrow, R.J. Brook, and M.J. Norgett: Electrolyte for the high temperature fuel cell; experimental and theoretical studies of the perovskite LaAlO3. J. Power Sources 3, 67 (1978).

    Article  CAS  Google Scholar 

  18. T. Ishihara, H. Matsuda, Y. Mizuhara, and Y. Takita: Improved oxygen ion conductivity of NdAlO3 perovskite-type oxide by doping with Ga. Solid State Ionics 70-71(1), 234 (1994).

    Article  Google Scholar 

  19. T. Tsuji, Y. Ohashi, and Y. Yamamura: Effect of ionic radius on electrical conductivity of doped SmAlO3 perovskite oxide. Solid State Ionics 154-155, 541 (2002).

    Article  Google Scholar 

  20. A. Sinha, B.P. Sharma, and P. Gopalan: Development of novel perovskite based oxide ion conductor. Electrochim. Acta 51(7), 1184 (2006).

    Article  CAS  Google Scholar 

  21. M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, and W.T. Thompson: High temperature neutron diffraction study of the Al2O3-Y2O3 system. J. Eur. Ceram. Soc. 26(16), 3515 (2006).

    Article  CAS  Google Scholar 

  22. H. Yasuda, I. Ohnaka, Y. Mizutani, and Y. Waku: Selection of eutectic systems in Al2O3Y2O3 ceramics. Sci. Technol. Adv. Mater. 2, 67 (2001).

    Article  CAS  Google Scholar 

  23. R. Hariharan, A. Venkatasubramanian, and P. Gopalan: Solid-state synthesis and characterization of Ca-substituted YAlO3 as electrolyte for solid oxide fuel cells. J. Solid State Electrochem. 14, 1657 (2010).

    Article  CAS  Google Scholar 

  24. R. Hariharan and P. Gopalan: Chemical synthesis and characterization of Ca-substituted YAlO3 as electrolyte for solid oxide fuel cells. J. Alloys Compd. 496, 528 (2010).

    Article  CAS  Google Scholar 

  25. P.S. Anderson, G.C. Mather, F.M.B. Marques, D.C. Sinclair, and A.R. West: Synthesis and characterisation of La0.95Sr0.05GaO3-σ, La0.95Sr0.05AlO3-σ and Y0.95Sr0.05AlO3-σ. J. Eur. Ceram. Soc. 19, 1665 (1999).

    Article  CAS  Google Scholar 

  26. R. Diehl and G. Brandt: Crystal structure refinement of YAlO3, a promising laser material. Mater. Res. Bull. 10, 85 (1975).

    Article  CAS  Google Scholar 

  27. J. Chen, G. Zhao, D. Cao, Q. Dong, Y. Ding, and S. Zhou: Computer simulation of intrinsic defects in YAlO3 single crystal. Physica B 404(20), 3405 (2009).

    Article  CAS  Google Scholar 

  28. J.W. Stevenson, T.R. Armstrong, D.E. McGready, L.R. Pederson, and W.J. Weber: Processing and electrical Properties of alkaline earth-doped lanthanum gallate. J. Electrochem. Soc. 144, 3613 (1997).

    Article  CAS  Google Scholar 

  29. T.Y. Nguyen, M. Dokiya, S. Wang, H. Tagawa, and T. Hashimoto: The effect of oxygen vacancy on the oxide ion mobility in LaAlO3-based oxide. Solid State Ionics 130, 229 (2000).

    Article  CAS  Google Scholar 

  30. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32(5), 751 (1976).

    Article  Google Scholar 

  31. J.B. Bauerle: Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Gopalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, R., Gopalan, P. Effect of A-site substitution on electrical conductivity and microstructure of YAlO3. Journal of Materials Research 27, 2017–2023 (2012). https://doi.org/10.1557/jmr.2012.197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.197

Navigation