Skip to main content
Log in

Investigating the structural, vibrational, optical, and dielectric properties in Mg-substituted LaAlO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, vibrational, optical, and dielectric properties have been probed in Mg-substituted LaAlO3. For this purpose, a series of LaAl1−xMgxO3−δ (0 ≤ x ≤ 0.20) polycrystalline samples has been prepared using the sol–gel synthesis route. Changes in structural properties due to Mg substitution have been analyzed with the X-ray diffraction technique. The correlation of the degree of distortion of AlO6 octahedra with the Eg and A1g modes in Raman spectra has been discussed. Mg substitution leads to decrease the optical bandgap and increases in the electronic disorder in terms of Urbach energy \({(E}_{\mathrm{u}})\), which has been investigated using optical absorption spectroscopy. An asymmetry in Eg mode (36 cm−1) has been observed in Raman spectra, which could be a signature of electron–phonon interaction induced due to disorder via Mg-substitution. Thus, the role of disorder in the electron–phonon interaction (1/|q|) has been understood with the relation between asymmetry parameter (q) of Raman phonon mode and \({E}_{\mathrm{u}}\) in accordance with an earlier model: \(\frac{{I}}{{{q}}^{2}}\propto{ \xi}{{E}}_{\text{u}}{+\lambda}\). Further, Impedance spectroscopy has been used to study dielectric response with Mg substitution in LAO. Decrement in the dielectric constant (\(\kappa\)) has been correlated with the presence of oxygen vacancies and electronic disorder with a relationship \({{E}}_{\text{u}}\propto 1/\kappa^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study will be made available at reasonable request.

References

  1. B.C. Chakoumakos, D.G. Schlom, M. Urbanik, J. Luine, Thermal expansion of LaAlO3 and (La, Sr)(Al, Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979–1982 (1998). https://doi.org/10.1063/1.366925

    Article  CAS  Google Scholar 

  2. T.C. Asmara, A. Annadi, I. Santoso, P.K. Gogoi, A. Kotlov, H.M. Omer, M. Motapothula, M.B.H. Breese, M. Rübhausen, T. Venkatesan, Ariando, A. Rusydi, Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity. Nat. Commun. 5, 3663 (2014). https://doi.org/10.1038/ncomms4663

    Article  CAS  Google Scholar 

  3. K. Xiong, J. Robertson, S.J. Clark, Defect states in the high-dielectric-constant gate oxide LaAlO3. Appl. Phys. Lett. 89, 022907 (2006). https://doi.org/10.1063/1.2221521

    Article  CAS  Google Scholar 

  4. H.-L. Hu, A. Pham, R. Tilley, R. Zeng, T.T. Tan, C.-H. Kong Charlie, R. Webster, D. Wang, S. Li, Largely enhanced mobility in trilayered LaAlO3/SrTiO3/LaAlO3 heterostructures. ACS Appl. Mater. Interfaces 10, 20950–20958 (2018). https://doi.org/10.1021/acsami.7b11218

    Article  CAS  Google Scholar 

  5. X. Luo, B. Wang, Y. Zheng, First-principles study on energetics of intrinsic point defects in LaAlO3. Phys. Rev. B 80, 104115 (2009). https://doi.org/10.1103/PhysRevB.80.104115

    Article  CAS  Google Scholar 

  6. J. Fu, J. Zhao, T. Sa, N. Qin, D. Bao, Photoluminescent and dielectric properties of Eu3+-doped LaAlO3 thin films fabricated by chemical solution deposition method. Appl. Surf. Sci. 286, 1–6 (2013). https://doi.org/10.1016/j.apsusc.2013.08.069

    Article  CAS  Google Scholar 

  7. G. Wu, H. Deng, W. Wang, K. Zhang, H. Cao, P. Yang, J. Chu, Effect of Co doping on the structure, optical and magnetic properties of LaAlO3 thin films. J. Mater. Sci. Mater. Electron. 25, 3137–3140 (2014). https://doi.org/10.1007/s10854-014-1994-z

    Article  CAS  Google Scholar 

  8. H. Jiang, X.Y. Qiu, G.L. Yuan, H. Zhu, J.-M. Liu, Effect of magnetic metal cluster doping on dielectric property of LaAlO3 thin films prepared by pulsed laser deposition. Mater. Sci. Semicond. Process. 7, 237–241 (2004). https://doi.org/10.1016/j.mssp.2004.09.004

    Article  CAS  Google Scholar 

  9. J. Zylberberg, Z.-G. Ye, Improved dielectric properties of bismuth-doped LaAlO3. J. Appl. Phys. 100, 086102 (2006). https://doi.org/10.1063/1.2358827

    Article  CAS  Google Scholar 

  10. C.R. Manjunatha, B.M. Nagabhushana, M.S. Raghu, S. Pratibha, N. Dhananjaya, A. Narayana, Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. Mater. Sci. Eng. C 101, 674–685 (2019). https://doi.org/10.1016/j.msec.2019.04.013

    Article  CAS  Google Scholar 

  11. E. Breckenfeld, R.B. Wilson, L.W. Martin, Effect of growth induced (non)stoichiometry on the thermal conductivity, permittivity, and dielectric loss of LaAlO3 films. Appl. Phys. Lett. 103, 082901 (2013). https://doi.org/10.1063/1.4818718

    Article  CAS  Google Scholar 

  12. O.N. Verma, P.A. Jha, P. Singh, P.K. Jha, P. Singh, Influence of iso-valent ‘Sm’ double substitution on the ionic conductivity of La0.9Sr0.1Al0.9Mg0.1O3−δ ceramic system. Mater. Chem. Phys. 241, 122345 (2020). https://doi.org/10.1016/j.matchemphys.2019.122345

    Article  CAS  Google Scholar 

  13. O.N. Verma, P.K. Jha, P. Singh, A structural–electrical property correlation in A-site double substituted lanthanum aluminate. J. Appl. Phys. 122, 225106 (2017). https://doi.org/10.1063/1.4999002

    Article  CAS  Google Scholar 

  14. J.Y. Park, G.M. Choi, The effect of Co addition on the electrical conductivity of Sr- and Mg-doped LaAlO3. J. Electroceram. 17, 787–791 (2006). https://doi.org/10.1007/s10832-006-4266-3

    Article  CAS  Google Scholar 

  15. A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, Strain induced disordered phonon modes in Cr doped PrFeO3. J. Phys. Condens. Matter 31, 275602 (2019). https://doi.org/10.1088/1361-648X/ab1195

    Article  CAS  Google Scholar 

  16. A. Sati, V. Mishra, A. Kumar, M.K. Warshi, A. Sagdeo, R. Kumar, P.R. Sagdeo, Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3. J. Mater. Sci. Mater. Electron. 30, 9498–9506 (2019). https://doi.org/10.1007/s10854-019-01281-5

    Article  CAS  Google Scholar 

  17. A. Kumar, O.V. Rambadey, H. Rai, P.R. Sagdeo, Role of laser excitation wavelength and power in the Fano resonance scattering in RFe0.50Cr0.50O3 (R = Sm, Er, and Eu): a brief Raman study. J. Phys. Chem. C (2022). https://doi.org/10.1021/acs.jpcc.1c09537

    Article  Google Scholar 

  18. H. Boschker, C. Richter, E. Fillis-Tsirakis, C.W. Schneider, J. Mannhart, Electron–phonon coupling and the superconducting phase diagram of the LaAlO3–SrTiO3 interface. Sci. Rep. 5, 12309 (2015). https://doi.org/10.1038/srep12309

    Article  CAS  Google Scholar 

  19. O.V. Rambadey, A. Kumar, A. Sati, P.R. Sagdeo, Exploring the interrelation between Urbach energy and dielectric constant in Hf-substituted BaTiO3. ACS Omega 6, 32231–32238 (2021). https://doi.org/10.1021/acsomega.1c05057

    Article  CAS  Google Scholar 

  20. A. Kumar, O.V. Rambadey, P.R. Sagdeo, Unorthodox approach to realize the correlation between the dielectric constant and electronic disorder in Cr-doped PrFeO3. J. Phys. Chem. C 125, 7378–7383 (2021). https://doi.org/10.1021/acs.jpcc.1c00203

    Article  CAS  Google Scholar 

  21. O.V. Rambadey, A. Kumar, P.R. Sagdeo, Investigating the correlation between the Urbach energy and asymmetry parameter of the Raman mode in semiconductors. Phys. Rev. B 104, 245205 (2021). https://doi.org/10.1103/PhysRevB.104.245205

    Article  CAS  Google Scholar 

  22. A. Kumar, M.K. Warshi, A. Sagdeo, M. Gupta, P.R. Sagdeo, New route to estimate the Mott-Hubbard and charge transfer parameters: an optical and X-ray absorption studies. Solid State Sci. 115, 106582 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106582

    Article  CAS  Google Scholar 

  23. A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Strain control of Urbach energy in Cr-doped PrFeO3. Appl. Phys. A 123, 576 (2017). https://doi.org/10.1007/s00339-017-1186-9

    Article  CAS  Google Scholar 

  24. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  25. C.J. Howard, B.J. Kennedy, B.C. Chakoumakos, Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. J. Phys. Condens. Matter 12, 349–365 (2000). https://doi.org/10.1088/0953-8984/12/4/301

    Article  CAS  Google Scholar 

  26. M. Gupta, S. Shirbhate, P. Ojha, S. Acharya, Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. Solid State Ion. 320, 199–209 (2018). https://doi.org/10.1016/j.ssi.2018.03.005

    Article  CAS  Google Scholar 

  27. M. Gupta, A. Kumar, A. Sagdeo, P.R. Sagdeo, Doping-induced combined Fano and phonon confinement effect in La-doped CeO2: Raman spectroscopy analysis. J. Phys. Chem. C 125, 2648–2658 (2021). https://doi.org/10.1021/acs.jpcc.0c09133

    Article  CAS  Google Scholar 

  28. A. Kumar, M.K. Warshi, A. Sagdeo, M. Krzystyniak, S. Rudić, D.T. Adroja, I. da Silva, P.R. Sagdeo, Origin of natural and magnetic field induced polar order in orthorhombic PrFe1/2Cr1/2O3. Phys. Rev. B 104, 035101 (2021). https://doi.org/10.1103/PhysRevB.104.035101

    Article  CAS  Google Scholar 

  29. A. Kumar, M.K. Warshi, M. Gupta, P.R. Sagdeo, The magneto-elastic and optical properties of multiferroic GaFeO3−δ. J. Magn. Magn. Mater. 514, 167210 (2020). https://doi.org/10.1016/j.jmmm.2020.167210

    Article  CAS  Google Scholar 

  30. V. Mishra, M.K. Warshi, R. Kumar, P.R. Sagdeo, Design and development of in situ temperature dependent diffuse reflectance spectroscopy setup. J. Instrum. 13, T11003–T11003 (2018). https://doi.org/10.1088/1748-0221/13/11/T11003

    Article  Google Scholar 

  31. H.M. Rai, S.K. Saxena, V. Mishra, M.K. Warshi, R. Kumar, P.R. Sagdeo, Effect of Mn doping on dielectric response and optical band gap of LaGaO3. Adv. Mater. Process. Technol. 3, 539–549 (2017). https://doi.org/10.1080/2374068X.2017.1349363

    Article  Google Scholar 

  32. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  33. S.A. Hayward, F.D. Morrison, S.A.T. Redfern, E.K.H. Salje, J.F. Scott, K.S. Knight, S. Tarantino, A.M. Glazer, V. Shuvaeva, P. Daniel, M. Zhang, M.A. Carpenter, Transformation processes in LaAlO3: neutron diffraction, dielectric, thermal, optical, and Raman studies. Phys. Rev. B 72, 054110 (2005). https://doi.org/10.1103/PhysRevB.72.054110

    Article  CAS  Google Scholar 

  34. R.D. Shannon, C.T. Prewitt, Revised values of effective ionic radii. Acta Crystallogr. B 26, 1046–1048 (1970). https://doi.org/10.1107/S0567740870003576

    Article  CAS  Google Scholar 

  35. M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Thomsen, Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3. Phys. Rev. B 59, 4146–4153 (1999). https://doi.org/10.1103/PhysRevB.59.4146

    Article  CAS  Google Scholar 

  36. J.F. Scott, Raman study of trigonal-cubic phase transitions in rare-earth aluminates. Phys. Rev. 183, 823–825 (1969). https://doi.org/10.1103/PhysRev.183.823

    Article  CAS  Google Scholar 

  37. G. Gouadec, P. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.01.001

    Article  CAS  Google Scholar 

  38. A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306

    Article  CAS  Google Scholar 

  39. V.G. Sathe, A. Dubey, Broken symmetry in LaAlO3 single crystal probed by resonant Raman spectroscopy. J. Phys. Condens. Matter 19, 382201 (2007). https://doi.org/10.1088/0953-8984/19/38/382201

    Article  CAS  Google Scholar 

  40. R.S. Silva, F. Cunha, P. Barrozo, Raman spectroscopy of the Al-doping induced structural phase transition in LaCrO3 perovskite. Solid State Commun. 333, 114346 (2021). https://doi.org/10.1016/j.ssc.2021.114346

    Article  CAS  Google Scholar 

  41. P. Kubelka, New contributions to the optics of intensely light-scattering materials Part I. J. Opt. Soc. Am. 38, 448 (1948). https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  42. L. Yang, B. Kruse, Revised Kubelka-Munk theory I: theory and application. J. Opt. Soc. Am. 21, 1933 (2004). https://doi.org/10.1364/JOSAA.21.001933

    Article  Google Scholar 

  43. S. Pratibha, N. Dhananjaya, S.R. Manohara, L. Yadav, Effect of Sm3+, Bi3+ ion doping on the photoluminescence and dielectric properties of phytosynthesized LaAlO3 nanoparticles. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00986-x

    Article  Google Scholar 

  44. V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: an experimental and theoretical investigation. J. Appl. Phys. 122, 065105 (2017). https://doi.org/10.1063/1.4997939

    Article  CAS  Google Scholar 

  45. J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys. Rev. B 64, 245407 (2001). https://doi.org/10.1103/PhysRevB.64.245407

    Article  CAS  Google Scholar 

  46. S. Loridant, Raman spectroscopy as a powerful tool to characterize ceria-based catalysts. Catal. Today 373, 98–111 (2021). https://doi.org/10.1016/j.cattod.2020.03.044

    Article  CAS  Google Scholar 

  47. N. Bura, A. Bhoriya, D. Yadav, J. Singh, N. Dilawar Sharma, Temperature-dependent phonon behavior in nanocrystalline Tm2O3: Fano interference and phonon anharmonicity. J. Phys. Chem. C 125, 18259–18269 (2021). https://doi.org/10.1021/acs.jpcc.1c04250

    Article  CAS  Google Scholar 

  48. A. Sunny, A. Thirumurugan, K. Balasubramanian, Laser induced Fano scattering, electron–phonon coupling, bond length and phonon lifetime changes in α-Fe2O3 nanostructures. Phys. Chem. Chem. Phys. 22, 2001–2009 (2020). https://doi.org/10.1039/C9CP04959B

    Article  CAS  Google Scholar 

  49. I. Childres, L.A. Jauregui, Y.P. Chen, Raman spectra and electron–phonon coupling in disordered graphene with gate-tunable doping. J. Appl. Phys. 116, 233101 (2014). https://doi.org/10.1063/1.4903959

    Article  CAS  Google Scholar 

  50. R.N. Nayyer, S. Anwane, V. Gaikwad, V. Sathe, S. Acharya, Correlation of dynamical disorder and oxy-ion diffusion mechanism in a Dy, W co-doped La2Mo2O9 system: an electrolyte for IT-SOFCs. Dalton Trans. 49, 13406–13419 (2020). https://doi.org/10.1039/D0DT02954H

    Article  CAS  Google Scholar 

  51. J.N. Wilson, J.M. Frost, S.K. Wallace, A. Walsh, Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 010901 (2019). https://doi.org/10.1063/1.5079633

    Article  CAS  Google Scholar 

  52. C. Kittel, Introduction to Solid State Physics, vol. 12 (Wiley, New York, 1986)

    Google Scholar 

  53. M.B. Mohamed, H. Wang, H. Fuess, Dielectric relaxation and magnetic properties of Cr doped GaFeO3. J. Phys. Appl. Phys. 43, 455409 (2010). https://doi.org/10.1088/0022-3727/43/45/455409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the Sophisticated Instrumentation Center, Indian Institute of Technology (IIT) Indore, for providing characterization facilities. DST-FIST (SR/FIST/PSI-225/2016) is acknowledged for providing funding to use the Raman spectrometer. The authors sincerely thank DST-SERB for financial support through Sanction Number CRG/2018/001829. M.G. acknowledges DST-INSPIRE, New Delhi, with Sanction Code No. IF180177 for providing a Senior Research Fellowship. O.V.R. acknowledges IIT Indore for providing financial support through the Teaching Assistantship. Department of MEMS, IIT Indore is acknowledged for providing FESEM measurements. Er. Nitin Upadhyay and Mayur Dhake are acknowledged for technical assistance in Raman and FESEM measurements. Ritu and Kailash Kumar from IIT, Indore are acknowledge for fruitful discussions.

Funding

DST-FIST (SR/FIST/PSI-225/2016) funding to use the Raman spectrometer. The financial support from DST-SERB CRG/2018/001829. DST-INSPIRE, New Delhi, with Sanction Code No. IF180177 for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Sample synthesis, sample characterization, data analysis, manuscript conceptualization, writing, modification, revision, and proof reading and corrections (First Author): MG. Raman Spectroscopy measurements and fruitful discussions (Co-author): OVR. Help during the X-ray diffraction measurements at RRCAT, Indore and scientific discussion (Co-author): AS. Defination of problem, supervision of scientific problems, scientific discussions, manuscript and revision modifications, and proof corrections (Corresponding author): PRS. All authors have approved the final version of the manuscript before submission.

Corresponding author

Correspondence to Pankaj R. Sagdeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Rambadey, O.V., Sagdeo, A. et al. Investigating the structural, vibrational, optical, and dielectric properties in Mg-substituted LaAlO3. J Mater Sci: Mater Electron 33, 13352–13366 (2022). https://doi.org/10.1007/s10854-022-08273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08273-y

Navigation