Skip to main content
Log in

Silver composites as highly stable cathode current collectors for solid oxide fuel cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Time stability of the solid oxide fuel cells (SOFCs) has been a significant concern toward realization of their practical applications. Its operation at elevated temperatures and in oxidizing atmospheres makes the cathode current collector one of the most vulnerable components of the SOFCs. Silver and silver-based metal oxide [lanthanum–strontium manganite (LSM) and yttria-stabilized zirconia] composites were investigated for the development of low-cost current collectors with long-term stability. While densification of pure silver limited its use as current collector, incorporation of oxide particles to the silver matrix led to formation of porous composites. However, addition of YSZ particles did not result in a stable porosity. Analysis of the impedance spectra allowed further investigations on the obtained microstructures and the formed contacts. No microstructural degradation has been observed in the porous Ag–LSM composite current collector and its electrical properties remained stable for over 5000 h of measurements at 800 °C in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. W. Schafer, A. Koch, U. Herold-Schmidt, and D. Stolten: Materials, interfaces and production techniques for planar solid oxide fuel cells. Solid State Ionics 86-87, 1235 (1996).

    Article  Google Scholar 

  2. S. Koch and P.V. Hendriksen: Contact resistance at ceramic interfaces and its dependence on mechanical load. Solid State Ionics 168, 1 (2004).

    Article  CAS  Google Scholar 

  3. X.D. Zhou, L.R. Pederson, J.W. Templeton, and J.W. Stevenson: Electrochemical performance and stability of the cathode for solid oxide fuel cells. J. Electrochem. Soc. 157, B220 (2010).

    Article  CAS  Google Scholar 

  4. K. Huang, P.Y. Hou, and J.B. Goodenough: Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics 129, 237 (2000).

    Article  CAS  Google Scholar 

  5. J. Piron-Abellan, V. Shemet, F. Tietz, L. Singheiser, and W.J. Quadakkers: Ferritic steel interconnect for reduced temperature SOFC, in Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells; H. Yokokawa and S.C. Singhal, eds., PV 2001-16, The Electrochemical Proceedings Series, Pennington, NJ, 2001; p. 811.

    Google Scholar 

  6. Z. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson: Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150, A1188 (2003).

    Article  CAS  Google Scholar 

  7. L.T. Wilkinson and J.H. Zhu: Ag-perovskite composite materials for SOFC cathode–interconnect contact. J. Electrochem. Soc. 156, B905–B912 (2009).

    Article  CAS  Google Scholar 

  8. Z. Yang, G. Xia, P. Singh, and J.W. Stevenson: Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells. J. Power Sources 155, 246 (2006).

    Article  CAS  Google Scholar 

  9. S.P. Simner, M.D. Anderson, J.E. Coleman, and J.W. Stevenson: Performance of a novel La(Sr)Fe(Co)O3–Ag SOFC cathode. J. Power Sources 161, 115 (2006).

    Article  CAS  Google Scholar 

  10. S.P. Simner, M.D. Anderson, L.R. Pederson, and J.W. Stevenson: Performance variability of La(Sr)FeO3 SOFC cathode with Pt, Ag, and Au current collectors. J. Electrochem. Soc. 152, A1851 (2005).

    Article  CAS  Google Scholar 

  11. T.B. Sheppard and B.S.J. Kang: Development of candidate silver Cermet contact materials for cathode side in solid oxide fuel cell, in Proceedings of Materials Science and Technology Conference (MS&T) 2007, P. Singh, A-M. Azad, D.C. Collins, P.N. Kumta, C. Legzdins, A. Manthiram, A. Manicannan, S.K. Sundaram and Z.G. Yang, eds., PV 2007-2, Detroit, MI, 2007; p. 1209.

    Google Scholar 

  12. P. Singh, Z. Yang, V. Viswanathan, and J.W. Stevenson: Observations on the structural degradation of silver during simultaneous exposure to oxidizing and reducing environments. J. Mater. Eng. Perform. 13, 287 (2004).

    Article  CAS  Google Scholar 

  13. M. Camaratta and E.D. Wachsman: Silver-bismuth oxide cathodes for IT-SOFCs; Part I-microstructural instability. Solid State Ionics 178, 1242 (2007).

    Article  CAS  Google Scholar 

  14. H.U. Anderson and F. Tietz: Interconnects, in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S.C. Singhal and K. Kendall (Elsevier Advanced Technology, Oxford, UK, 2003) p. 183.

    Google Scholar 

  15. A. Sarikaya, V. Petrovsky, and F. Dogan: Development of a silver based current collector for SOFC cathodes, in In-Situ Studies of Solid-Oxide Fuel-Cell Materials, edited by R. Maher (Mater. Res. Soc. Symp. Proc. 1385, Warrendale, PA, 2012) MRSF11-1385-C07-10.

  16. W.A. Meulenberg, O. Teller, U. Flesch, H.P. Buchkremer, and D. Stöver: Improved contacting by the use of silver in solid oxide fuel cells up to an operating temperature of 800 °C. J. Mater. Sci. 36, 3189 (2001).

    Article  CAS  Google Scholar 

  17. Z. Wang, N. Zhang, J. Qiao, K. Sun, and P. Xu: Improved SOFC performance with continuously graded anode functional layer. Electrochem. Commun. 11, 1120 (2009).

    Article  CAS  Google Scholar 

  18. E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2005) p. 84.

    Book  Google Scholar 

  19. S. Lanfredi and A.C.M. Rodrigues: Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J. Appl. Phys. 86, 2215 (1999).

    Article  CAS  Google Scholar 

  20. P. Jasinski, V. Petrovsky, T. Suzuki, and H.U. Anderson: Impedance studies of diffusion phenomena and ionic and electronic conductivity of cerium oxide. J. Electrochem. Soc. 152, J27 (2005).

    Article  CAS  Google Scholar 

  21. H. Möbius and B. Rohland: Oxygen-ion-conducting solid electrolytes and their applications. XIV. Effect of the electrode material on the results of electrical conductivity measurements in solid electrolytes. Z. Chem. 6, 158 (1966).

    Article  Google Scholar 

  22. S. Badwal, M. Bannister, and M. Murray: Non-stoichiometric oxide electrodes for solid state electrochemical devices. J. Electroanal. Chem. 168, 363 (1984).

    Article  CAS  Google Scholar 

  23. T.A. Ramanarayanan and R.A. Rapp: The diffusivity and solubility of oxygen in liquid tin and solid silver and the diffusivity. Metall. Mater. Trans. B 3, 3239 (1972).

    Article  CAS  Google Scholar 

  24. I. Kontoulis and B.C.H. Steele: Determination of oxygen diffusion in solid Ag by an electrochemical technique. Solid State Ionics 47, 317 (1991).

    Article  CAS  Google Scholar 

  25. JH. Park: Measuring oxygen diffusivity and solubility in solid silver with a gas-tight electrochemical cell. Mater. Lett. 9, 313 (1990).

    Article  CAS  Google Scholar 

  26. M. Kanezashi, J. O’Brien-Abraham, Y.S. Lin, and K. Suzuki: Gas permeation through DDR-type zeolite membranes at high temperatures. AlChE J. 54, 1478 (2008).

    Article  CAS  Google Scholar 

  27. C.T. Sah: Fundamentals of Solid-State Electronics (World Scientific Publishing, Singapore, 1991) p. 436.

    Book  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the AFRL under Contract No. FA4819-09-C-0018. Utilization of SEM facilities at the Graduate Center for Materials Research (MRC) of Missouri S&T is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Dogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarikaya, A., Petrovsky, V. & Dogan, F. Silver composites as highly stable cathode current collectors for solid oxide fuel cells. Journal of Materials Research 27, 2024–2029 (2012). https://doi.org/10.1557/jmr.2012.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.175

Navigation