Skip to main content
Log in

(Bi,Sb)2Te3-PbTe chalcogenide alloys: Impact of the cooling rate and sintering parameters on the microstructures and thermoelectric performances

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2011

This article has been updated

Abstract

(Bi,Sb)2Te3 + 4 mol%PbTe was quenched in water and on a rotating copper wheel (melt spinning). It was found that PbTe was immiscible in (Bi,Sb)2Te3 when the material is quenched in water and that the thermoelectric figure of merit increases by annealing. Natural nanostructures (nns) were found in melt-spun (Bi,Sb)2Te3, whereas they were hard to detect in (Bi,Sb)2Te3 alloyed with PbTe. There is a correlation between the orientation of the strain field and the nns. Within the grains of melt-spun (Bi,Sb)2Te3 alloyed with PbTe, the chemical composition was homogeneous. An enrichment of Pb was found at the grain boundaries. Quenched (Bi,Sb)2Te3 alloyed with 0.3 wt%PbTe have been spark plasma sintered (SPS). After optimization, the Seebeck coefficients of the melt-spun SPS (MS-SPS) materials were larger than for materials quenched in water and sintered (QW-SPS) materials. In addition, the mobility increases with the carrier concentration in MS-SPS materials, whereas it decreases in QW-SPS materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.

Similar content being viewed by others

Change history

REFERENCES

  1. T.M. Tritt: Harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  2. H. Böttner, D.G. Ebling, A. Jacquot, J. König, L. Kirste, and J. Schmidt: Structural and mechanical properties of sparc plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).

    Article  Google Scholar 

  3. D.G. Ebling, A. Jacquot, M. Jägle, H. Böttner, U. Kühn, and L. Kirste: Structure and thermoelectric properties of nanocomposite bismuth telluride prepared by melt spinning or by partially alloying with IV–VI compounds. Phys. Status Solidi RRL 1(6), 238 (2007).

    Article  CAS  Google Scholar 

  4. B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky and M.P. Dariel: Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6). J. Electron. Mater. 39(9), 2165 (2010).

    Article  CAS  Google Scholar 

  5. Y. Gelbstein, B. Dado, O.B. Yehuda, Y. Sadia, Z. Dashevsky, and M.P. Dariel: High thermoelectric figure of merit and nanostructuring in bulk p-type Gex(SnyPb1-y)1-xTe alloys following a spinodal decomposition reaction. Chem. Mater. 22, 1054 (2010).

    Article  CAS  Google Scholar 

  6. M.S. Dresselhaus, G. Chen, Z.F. Ren, G. Dresselhaus, A. Henry, and J.-P. Fleurial: New composite thermoelectric materials for energy harvesting applications. JOM 61(4), 86 (2009).

    Article  CAS  Google Scholar 

  7. N. Peranio, O. Eibl, and J. Nurnus: Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J. Appl. Phys. 100, 114306 (2006).

    Article  Google Scholar 

  8. V.M. Glazov and Yu.V. Yatmanov: Thermoelectric properties of semiconducting solid solutions Bi2Te2.4Se0.6 and Bi0.52Sb1.48Te3 prepared by ultrafast cooling melts. Moscow Institute of Electronics. Translated from Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy, Vol. 22, No. 1, pp. 36–40, January, 1986. Original 23 (1984) (article submitted).

    CAS  Google Scholar 

  9. E. Koukharenkou, N. Fretya, V.G. Shepelevich, and C. Tedenac: Electrical properties of Bi2-xSbxTe3 materials obtained by ultrarapid quenching. J. Alloy. Comp. 327, 1 (2001).

    Article  Google Scholar 

  10. D.G. Ebling, A. Jacquot, H. Böttner, L. Kirste, and J. Schmidt: Influence of group IV-Te alloing on nanocompiste structure and thermoelectric properties of Bi2Te3 compounds. J. Electron. Mater. 38(7), 1450 (2009).

    Article  CAS  Google Scholar 

  11. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang: Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater. Sci. Eng., B 117, 334 (2005).

    Article  Google Scholar 

  12. C.H. Lim, K.T. Kim, Y.H. Kim, Y.S. Lee, C.H. Lee, and C.H. Lee: Improvement of the figure-of-merit by formation of crystallographic texture in Bi2Te3-based thermoelectric compounds. J. Electroceram. 17, 894 (2006).

    Google Scholar 

  13. Z.-C. Chen, K. Suzuki, S. Miura, K. Nishimura, and K. Ikeda: Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3 thermoelectric compound. Mater. Sci. Eng., A 500, 70 (2009).

    Article  Google Scholar 

  14. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren: Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 8(8), 2580 (2008).

    Article  CAS  Google Scholar 

  15. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).

    Article  CAS  Google Scholar 

  16. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  17. N. Peranio and O. Eibl: Quantitative EDX microanalysis of Bi2Te3 in the TEM. Phys. Status Solidi A 204(10), 3243 (2007).

    Article  CAS  Google Scholar 

  18. P. Stadelmann: EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).

    Article  CAS  Google Scholar 

  19. J. Thomas and T. Gemming: ELDISCA C#—a new version of the program for identifying electron diffraction patterns, in EMC 2008, Vol. I, (Aachen, 2008), pp. 231–232.

    Google Scholar 

  20. M.M. Stasova and N.K. Abrikosov: The radiographical analysis of the solid solution in system Bi-Sb-Te. Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy. 6, 1090 (1970).

    CAS  Google Scholar 

  21. A. Jacquot, H.-F. Pernau, J. König, U. Nussel, M. Bartel, D. Ebling, and M. Jaegle: Measurement uncertainties in thermoelectric materials, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, P1.

  22. P.W. Lange: Ein Vergleich zwischen Bi2Ti3 und Bi2Te2S. Naturwissenschaften. 27, 133 (1939).

    Article  CAS  Google Scholar 

  23. N. Peranio and O. Eibl: Structural modulations in Bi2Te3. J. Appl. Phys. 103, 024314 (2008).

    Article  Google Scholar 

  24. W.J. Xie, X.F. Tang, G. Chen, Q. Jin, and Q.J. Zhang: Nanostructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compound prepared by melt spinning technique, in Proceedings of the 26th International Conference on Thermoelectrics, Jeju Island, Korea, 2007, pp. 23–26

  25. H.J. Goldsmid: Thermoelectric Refrigeration (Plenum Press, New York, 1964).

    Book  Google Scholar 

  26. M. Lundstrom: Fundamentals of Carrier Transport (Cambridge University Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  27. H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, and L.F. Eastman: The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73(6), 821 (1998).

    Article  CAS  Google Scholar 

  28. A. Jacquot, J. König, B. Bayer, D. Ebling, J. Schmidt, and M. Jaegle: Coupled theoretical and experimental investigation of the role of impurity level and concentration in Bi2Te3 and PbTe-based materials at high temperature, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, pp. 1–12.

  29. B.K. Ridley: Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference. J. Phys. C Solid State Phys. 10, 1589 (1977).

    Article  CAS  Google Scholar 

  30. J.-N. Chazalviel: Coulomb Screening by Mobile Charges: Application to Materials Science, Chemistry and Biology (Birkhäuser, Basel, 1998).

    Google Scholar 

  31. T.M. Tritt: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).

    Book  Google Scholar 

  32. G. Kaiblinger-Grujin, H. Kosina, Ch. Köpf, and S. Selberherr: Influence of dopant spiecies on electron mobility in heavily doped semiconductors. Mater. Sci. Forum 258, 939 (1997).

    Article  Google Scholar 

  33. A. Jacquot, N. Farag, M. Jaegle, M. Bobeth, J. Schmidt, D. Ebling, and H. Böttner: Thermoelectric properties as a function of the electronic band structure and the microstructure of textured materials. J. Electron. Mater. 39(9), 1861 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge gratefully the synthesis of the PbTe by BASF (Germany) and the preparation of the quenched materials by the Institut Jean Lamour—UMR 7198 CNRS (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Jacquot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacquot, A., Jürgen, T., Schumann, J. et al. (Bi,Sb)2Te3-PbTe chalcogenide alloys: Impact of the cooling rate and sintering parameters on the microstructures and thermoelectric performances. Journal of Materials Research 26, 1773–1784 (2011). https://doi.org/10.1557/jmr.2011.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.78

Navigation