Skip to main content

Advertisement

Log in

New composite thermoelectric materials for energy harvesting applications

  • Global Innovations: Materials for Energy
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The concept of using nanostructured composite materials to enhance the dimensionless thermoelectric figure of merit ZT relative to that for their counterpart homogeneous alloyed bulk crystalline materials of similar chemical composition is presented in general terms. Specific applications are made to the Si-Ge and Bi2-−xSbxTe3 systems for use in high-temperature power generation and cooling applications. The scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease in the thermal conductivity are emphasized insofar as their simultaneous occurrence is enabled by the independent control of these physical properties through the special properties of their nanostructures. Also emphasized are the practical advantages of using such bulk samples both for thermoelectric property measurements and for providing a straightforward path to scaling up the materials synthesis and integration of such nanostructured materials into practical thermoelectric powergeneration and cooling modules and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lon E. Bell, Science, 321 (2008), p. 1457.

    Article  PubMed  ADS  CAS  Google Scholar 

  2. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics (Berlin: Springer-Verlag, 2001).

    MATH  Google Scholar 

  3. C. Uher, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: Taylor & Francis/CRC Press, Inc., 2006), Chapter 34, pp. 34-1–34-17.

    Google Scholar 

  4. T.M. Tritt and M.A. Subramanian, MRS Bulletin, 31 (2006), p. 188–198.

    Google Scholar 

  5. J.P. Heremans et al., Science, 321 (2008), pp. 554–557.

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Bed Poudel et al., Science, 320 (2008), pp. 634–638.

    Article  PubMed  ADS  CAS  Google Scholar 

  7. A.I. Hochbaum et al., Nature, 451 (2008), pp. 163–167.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. M.S. Dresselhaus et al., Advanced Materials, 19 (2007), pp. 1043–1053.

    Article  CAS  Google Scholar 

  9. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B, 47 (1993), pp. 16631–16634.

    Article  ADS  CAS  Google Scholar 

  10. Yucheng Lan et al., Nano Letters, article ASAP (25 February 2009), DOI: 101021/nl803235n.

  11. G.S. Snyder and E.S. Toberer, Nature Materials, 7 (2008), p. 105.

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Ronggui Yang, Gang Chen, and M.S. Dresselhaus, Phys. Rev. B, 72 (2005), pp. 125418-1–125418-7.

    ADS  Google Scholar 

  13. A. Henry and G. Chen, J. Computational and Theoretical Nanosciences, 5 (2008), pp. 141–152.

    CAS  Google Scholar 

  14. Giri Joshi et al., Nano Letters, 8 (2008), p. 4670.

    Article  CAS  Google Scholar 

  15. Xiaowei Wang et al., Applied Physics Letters, 93 (2008), p. 193121.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dresselhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresselhaus, M.S., Chen, G., Ren, Z.F. et al. New composite thermoelectric materials for energy harvesting applications. JOM 61, 86–90 (2009). https://doi.org/10.1007/s11837-009-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0058-y

Keywords

Navigation